Interactive Optimization With Parallel Coordinates: Exploring Multidimensional Spaces for Decision Support

Interactive optimization methods are particularly suited for letting human decision makers learn about a problem, while a computer learns about their preferences to generate relevant solutions. For interactive optimization methods to be adopted in practice, computational frameworks are required, which can handle and visualize many objectives simultaneously, provide optimal solutions quickly and representatively, all while remaining simple and intuitive to use and understand by practitioners. Addressing these issues, this work introduces SAGESSE (Systematic Analysis, Generation, Exploration, Steering and Synthesis Experience), a decision support methodology, which relies on interactive multiobjective optimization. Its innovative aspects reside in the combination of (i) parallel coordinates as a means to simultaneously explore and steer the underlying alternative generation process, (ii) a Sobol sequence to efficiently sample the points to explore in the objective space, and (iii) on-the-fly application of multiattribute decision analysis, cluster analysis and other data visualization techniques linked to the parallel coordinates. An illustrative example demonstrates the applicability of the methodology to a large, complex urban planning problem.

[1]  Peter J. Fleming,et al.  Computational steering of a multi-objective evolutionary algorithm for engineering design , 2007, Eng. Appl. Artif. Intell..

[2]  George Mavrotas,et al.  Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems , 2009, Appl. Math. Comput..

[3]  Hans-Peter Seidel,et al.  An Edge-Bundling Layout for Interactive Parallel Coordinates , 2014, 2014 IEEE Pacific Visualization Symposium.

[4]  Benny Raphael Multi‐criteria decision making for collaborative design optimization of buildings , 2011 .

[5]  Leena Tanner Selecting a text-processing system as a qualitative multiple criteria problem , 1991 .

[6]  Enrico Zio,et al.  A COMPARISON OF METHODS FOR SELECTING PREFERRED SOLUTIONS IN MULTIOBJECTIVE DECISION MAKING , 2012 .

[7]  Nicolas Gaud,et al.  A Review and Taxonomy of Interactive Optimization Methods in Operations Research , 2015, ACM Trans. Interact. Intell. Syst..

[8]  Kathrin Klamroth,et al.  Navigation in multiobjective optimization methods , 2017 .

[9]  Hiroyuki Sato,et al.  Preferred Region Based Evolutionary Multi-objective Optimization Using Parallel Coordinates Interface , 2015, 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI).

[10]  Kaisa Miettinen,et al.  Comparing Graphic and Symbolic Classification in Interactive Multiobjective Optimization , 2003 .

[11]  Timothy W. Simpson,et al.  Visual Steering Commands for Trade Space Exploration: User-Guided Sampling With Example , 2009, J. Comput. Inf. Sci. Eng..

[12]  Valerie Belton,et al.  Integrated Support from Problem Structuring through to Alternative Evaluation Using COPE and V·I·S·A , 1997 .

[13]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[14]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[15]  Miguel J. Bagajewicz,et al.  Pareto Optimal Solutions Visualization Techniques for Multiobjective Design and Upgrade of Instrumentation Networks , 2003 .

[16]  Camilla Forsell,et al.  Evaluation of Parallel Coordinates: Overview, Categorization and Guidelines for Future Research , 2016, IEEE Transactions on Visualization and Computer Graphics.

[17]  R McGill,et al.  Graphical Perception and Graphical Methods for Analyzing Scientific Data , 1985, Science.

[18]  Claus Rinner,et al.  Advances in Geographic Information Science , 2015 .

[19]  León Value-Focused Thinking versus Alternative-Focused Thinking: Effects on Generation of Objectives. , 1999, Organizational behavior and human decision processes.

[20]  Roman V. Yampolskiy,et al.  The technological singularity , 2017 .

[21]  Pekka Korhonen,et al.  A pareto race , 1988 .

[22]  François Maréchal,et al.  Linking Interactive Optimization for Urban Planning with a Semantic 3d City Model , 2018 .

[23]  Vesa Ojalehto,et al.  Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method , 2012 .

[24]  Kalyanmoy Deb,et al.  Data mining methods for knowledge discovery in multi-objective optimization: Part B - New developments and applications , 2017, Expert Syst. Appl..

[25]  Matthijs Kok,et al.  The interface with decision makers and some experimental results in interactive multiple objective programming methods , 1986 .

[26]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[27]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[28]  Patrick Riehmann,et al.  Time‐Series Plots Integrated in Parallel‐Coordinates Displays , 2016, Comput. Graph. Forum.

[29]  Kaisa Miettinen,et al.  Survey of methods to visualize alternatives in multiple criteria decision making problems , 2012, OR Spectrum.

[30]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[31]  Nelis Franken,et al.  Visual exploration of algorithm parameter space , 2009, 2009 IEEE Congress on Evolutionary Computation.

[32]  Pekka Korhonen,et al.  Quadratic Pareto Race , 1997 .

[33]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Meghna Babbar-Sebens,et al.  A web-based software tool for participatory optimization of conservation practices in watersheds , 2015, Environ. Model. Softw..

[35]  Graham K. Rand,et al.  Operational Research Society , 2013 .

[36]  François Maréchal,et al.  City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts , 2016 .

[37]  T. Simpson,et al.  Quantifying the Shape of Pareto Fronts During Multi-Objective Trade Space Exploration , 2018 .

[38]  Hugo A. D. do Nascimento,et al.  Interactive optimization in cooperative environments , 2006, APVIS.

[39]  Efstratios N. Pistikopoulos,et al.  Multi-Parametric Programming: Volume 1: Theory, Algorithms, and Applications , 2007 .

[40]  Larry W. Mays,et al.  Technical and Environmental Sustainability Assessment of Water Distribution Systems , 2014, Water Resources Management.

[41]  Joao M. C. Sousa,et al.  Reducing the carbon footprint of urban bus fleets using multi-objective optimization , 2015 .

[42]  A. Adithya Parallel Coordinates , 2015 .

[43]  François Maréchal,et al.  Interactive optimization for the planning of urban systems , 2017 .

[44]  M Monz,et al.  Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning , 2008, Physics in medicine and biology.

[45]  Roland W. Scholz,et al.  Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment , 2011 .

[46]  Scott Wilson,et al.  City Planning with a Multiobjective Genetic Algorithm and a Pareto Set Scanner , 2000 .

[47]  Alfred Inselberg,et al.  Multidimensional detective , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[48]  Michael Frankfurter,et al.  Statistical Methods For Environmental Pollution Monitoring , 2016 .

[49]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[50]  Kaisa Miettinen,et al.  Interactive multiobjective optimization system WWW-NIMBUS on the Internet , 2000, Comput. Oper. Res..

[51]  Meghna Babbar-Sebens,et al.  Usability evaluation of an interactive decision support system for user-guided design of scenarios of watershed conservation practices , 2017 .

[52]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[53]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[54]  Simon French,et al.  Interactive Multi-Objective Programming: Its Aims, Applications and Demands , 1984 .

[55]  Heidi A. Taboada,et al.  A Clustering Method Based on Dynamic Self Organizing Trees for Post-Pareto Optimality Analysis , 2011, Complex Adaptive Systems.

[56]  Peter Eades,et al.  User hints: a framework for interactive optimization , 2005, Future Gener. Comput. Syst..

[57]  Timoleon Kipouros,et al.  Use of Parallel Coordinates for Post-Analyses of Multi-Objective Aerodynamic Design Optimisation in Turbomachinery , 2008 .

[58]  A. D. Nikiforov,et al.  Multicriterion linear programming problems: (Analytical survey) , 1987 .

[59]  Stelios H. Zanakis,et al.  Multi-attribute decision making: A simulation comparison of select methods , 1998, Eur. J. Oper. Res..

[60]  Timothy W. Simpson,et al.  Visual Steering Commands for Trade Space Exploration: User-Guided Sampling With Example , 2009, J. Comput. Inf. Sci. Eng..

[61]  François Maréchal,et al.  Sustainable Built Environment ( SBE ) regional conference Expanding Boundaries : Systems Thinking for the Built Environment 1 ! ESTABLISHING LINKS FOR THE PLANNING OF SUSTAINABLE DISTRICTS , 2016 .

[62]  Jaap Spronk,et al.  Interactive multiple goal programming : applications to financial planning , 1981 .

[63]  Vilas M. Thakare,et al.  Post Pareto Analysis in Multi-objective Optimization , 2013 .

[64]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[65]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[66]  Mariagrazia Dotoli,et al.  A Decision Making Technique to Optimize a Buildings’ Stock Energy Efficiency , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[67]  Kalyanmoy Deb,et al.  Data mining methods for knowledge discovery in multi-objective optimization: Part A - Survey , 2017, Expert Syst. Appl..

[68]  L. Beach Broadening the Definition of Decision Making: The Role of Prechoice Screening of Options , 1993 .

[69]  François Maréchal,et al.  The Optimum Is Not the Goal: Capturing the Decision Space for the Planning of New Neighborhoods , 2018, Front. Built Environ..

[70]  David E. Rosenberg,et al.  Near-optimal water management to improve multi-objective decision making , 2012 .

[71]  Kaisa Miettinen,et al.  NAUTILUS method: An interactive technique in multiobjective optimization based on the nadir point , 2010, Eur. J. Oper. Res..

[72]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[73]  Xin Yao,et al.  How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum] , 2017, IEEE Computational Intelligence Magazine.

[74]  Enrique Alba,et al.  A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates , 2016, GECCO.

[75]  Ralph L. Keeney,et al.  Value-Focused Thinking: A Path to Creative Decisionmaking , 1992 .

[76]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[77]  Hh Henri Achten,et al.  Interactive Urban Design using integrated planning requirements control , 2005, eCAADe proceedings.

[78]  Joe Marks,et al.  Human-guided search , 2010, J. Heuristics.

[79]  Ralph L. Keeney,et al.  Creating More and Better Alternatives for Decisions Using Objectives , 2015, Oper. Res..

[80]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[81]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[82]  I. Ayres,et al.  Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage , 2009 .

[83]  F. Maréchal,et al.  Obstacles in energy planning at the urban scale , 2017 .

[84]  M. L. Fisher Interactive optimization , 1986 .

[85]  Some Theory of the Achievement Scalarizing Function , 2007 .

[86]  Richard J. Balling,et al.  Multiobjective Urban Planning Using Genetic Algorithm , 1999 .

[87]  Efstratios N. Pistikopoulos,et al.  Multi-objective optimization with convex quadratic cost functions: A multi-parametric programming approach , 2016, Comput. Chem. Eng..

[88]  Hae-Sang Park,et al.  A simple and fast algorithm for K-medoids clustering , 2009, Expert Syst. Appl..

[89]  Donal Finn,et al.  Estimating the potential for thermal load management in buildings at a large scale: overcoming challenges towards a replicable methodology , 2017 .

[90]  Sue L. Denham,et al.  Interactive visualisation for decision support and evaluation of robustness - in theory and in practice , 2005, Adv. Eng. Informatics.

[91]  David A. Bennett,et al.  Interactive evolutionary approaches to multiobjective spatial decision making: A synthetic review , 2007, Comput. Environ. Urban Syst..

[92]  C. Yeh,et al.  A simulation comparison of normalization procedures for TOPSIS , 2009, 2009 International Conference on Computers & Industrial Engineering.

[93]  G. Henze,et al.  SAMPLING BASED ON SOBOL 0 SEQUENCES FOR MONTE CARLO TECHNIQUES APPLIED TO BUILDING SIMULATIONS , 2011 .

[94]  Marcus Mueller,et al.  A Survey of the Application of Machine Learning in Decision Support Systems , 2015, ECIS.

[95]  Daniel Vanderpooten,et al.  The interactive approach in MCDA: A technical framework and some basic conceptions , 1989 .

[96]  David,et al.  On ε-Constraint Based Methods for the Generation of Pareto Frontiers , 2013 .

[97]  Wan Seon Shin,et al.  Interactive multiple objective optimization: Survey I - continuous case , 1991, Comput. Oper. Res..

[98]  Ching-Lai Hwang,et al.  Multiple Attribute Decision Making: Methods and Applications - A State-of-the-Art Survey , 1981, Lecture Notes in Economics and Mathematical Systems.

[99]  Timothy W. Simpson,et al.  A Preliminary Study of Novice and Expert Users' Decision-Making Procedures during Visual Trade Space Exploration , 2009, DAC 2009.

[100]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[101]  Mao Lin Huang,et al.  Two axes re-ordering methods in parallel coordinates plots , 2016, J. Vis. Lang. Comput..

[102]  Bernard Yannou,et al.  Information visualization for selection in Design by Shopping , 2017 .

[103]  Claude-Guy Quimper,et al.  Human-machine interaction for real-time linear optimization , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[104]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[105]  John Buchanan,et al.  An Experimental Evaluation of Interactive MCDM Methods and the Decision Making Process , 1994 .

[106]  Ben Shneiderman,et al.  Designing the User Interface: Strategies for Effective Human-Computer Interaction , 1998 .

[107]  Cheng-Min Feng,et al.  Using a genetic algorithm to generate alternative sketch maps for urban planning , 1999 .

[108]  R. Keeney Decision analysis: an overview. , 1982, Operations research.

[109]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[110]  Ralph L. Keeney,et al.  Feature Article - Decision Analysis: An Overview , 1982, Oper. Res..

[111]  François Maréchal,et al.  Multicriteria Decisions in Urban Energy System Planning: A Review , 2017, Front. Energy Res..

[112]  Meghna Babbar-Sebens,et al.  Interactive genetic algorithm for user‐centered design of distributed conservation practices in a watershed: An examination of user preferences in objective space and user behavior , 2017 .

[113]  Xin Yao,et al.  Adjusting Parallel Coordinates for Investigating Multi-objective Search , 2017, SEAL.

[114]  Lorraine R. Gardiner,et al.  Interactive Multiple Criteria Procedures: Some Reflections , 1997 .

[115]  Jie Liu,et al.  Understanding the Relationship Between Interactive Optimisation and Visual Analytics in the Context of Prostate Brachytherapy , 2018, IEEE Transactions on Visualization and Computer Graphics.

[116]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[117]  Maizura Mokhtar,et al.  Exploring multi-objective trade-offs in the design space of a waste heat recovery system , 2017 .

[118]  Stanley Zionts,et al.  Multiple Criteria Decision Making: THE CHALLENGE THAT LIES AHEAD , 1994 .

[119]  Gonzalo Guillén-Gosálbez,et al.  Enhancing the ϵ-constraint method through the use of objective reduction and random sequences: Application to environmental problems , 2016, Comput. Chem. Eng..

[120]  María Teresa Lamata,et al.  On rank reversal and TOPSIS method , 2012, Math. Comput. Model..

[121]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[122]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[123]  Kaisa Miettinen,et al.  Interactive multi-objective optimization for simulated moving bed processes , 2007 .

[124]  Ralph L. Keeney,et al.  Generating Objectives: Can Decision Makers Articulate What They Want? , 2008, Manag. Sci..

[125]  Andreas Buja,et al.  Interactive data visualization using focusing and linking , 1991, Proceeding Visualization '91.

[126]  Andrzej P. Wierzbicki,et al.  The Need for and Possible Methods of Objective Ranking , 2010, Trends in Multiple Criteria Decision Analysis.