Development of time series stacks of Landsat images for reconstructing forest disturbance history

Abstract Forest dynamics is highly relevant to a broad range of earth science studies, many of which have geographic coverage ranging from regional to global scales. While the temporally dense Landsat acquisitions available in many regions provide a unique opportunity for understanding forest disturbance history dating back to 1972, large quantities of Landsat images will need to be analysed for studies at regional to global scales. This will not only require effective change detection algorithms, but also highly automated, high level preprocessing capabilities to produce images with subpixel geolocation accuracies and best achievable radiometric consistency, a status called imagery-ready-to-use (IRU). This paper describes a streamlined approach for producing IRU quality Landsat time series stacks (LTSS). This approach consists of an image selection protocol, high level preprocessing algorithms and IRU quality verification procedures. The high level preprocessing algorithms include updated radiometric calibration and atmospheric correction for calculating surface reflectance and precision registration and orthorectification routines for improving geolocation accuracy. These automated routines have been implemented in the Landsat Ecosystem Disturbance Adaptive System (LEDAPS) designed for processing large quantities of Landsat images. Some characteristics of the LTSS developed using this approach are discussed.

[1]  D. Schimel,et al.  CONTINENTAL SCALE VARIABILITY IN ECOSYSTEM PROCESSES: MODELS, DATA, AND THE ROLE OF DISTURBANCE , 1997 .

[2]  S. VAN TUY,et al.  Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA , 2004 .

[3]  M. Ridd,et al.  A Comparison of Four Algorithms for Change Detection in an Urban Environment , 1998 .

[4]  Thierry Toutin,et al.  Geometric Correction of Remotely Sensed Images , 2003 .

[5]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[6]  Darrel L. Williams,et al.  A Statistical Evaluation of the Advantages of LANDSAT Thematic Mapper Data in Comparison to Multispectral Scanner Data , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[7]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[8]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[9]  C. Woodcock,et al.  The spectral/temporal manifestation of forest succession in optical imagery: The potential of multitemporal imagery , 2002 .

[10]  Darrel L. Williams,et al.  Landsat and Earth Systems Science : Development of terrestrial monitoring , 1997 .

[11]  Lawrence E. Band,et al.  Effect of land surface representation on forest water and carbon budgets , 1993 .

[12]  B. Markham,et al.  Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges , 2003, IEEE Trans. Geosci. Remote. Sens..

[13]  David M. Johnson,et al.  Impacts of imagery temporal frequency on land-cover change detection monitoring , 2004 .

[14]  E. Helmer,et al.  Cloud-Free Satellite Image Mosaics with Regression Trees and Histogram Matching. , 2005 .

[15]  Gretchen G. Moisen,et al.  Forest inventory and analysis in the United States : Remote sensing and geospatial activities , 2007 .

[16]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  C. Justice,et al.  Atmospheric correction of MODIS data in the visible to middle infrared: first results , 2002 .

[18]  J O S E P,et al.  The net carbon flux due to deforestation and forest regrowth in the Brazilian Amazon : analysis using a process-based model , 2004 .

[19]  John R. Schott,et al.  Landsat-5 Thematic Mapper Thermal Band Calibration Update , 2007, IEEE Geoscience and Remote Sensing Letters.

[20]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[21]  Gyanesh Chander,et al.  Landsat-5 TM reflective-band absolute radiometric calibration , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Fernando Pérez-Cabello,et al.  Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images , 2008 .

[23]  R. DeFries,et al.  INCREASING ISOLATION OF PROTECTED AREAS IN TROPICAL FORESTS OVER THE PAST TWENTY YEARS , 2005 .

[24]  Liem T. Tran,et al.  Latent and sensible energy flux over deforested land surfaces in the eastern Amazon and northern Thailand , 2000 .

[25]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[26]  Peter E. Thornton,et al.  Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests , 2002 .

[27]  Mark D. Schwartz,et al.  Assessing satellite‐derived start‐of‐season measures in the conterminous USA , 2002 .

[28]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[29]  D. T. Lauer,et al.  The availability of Landsat data : Past, present, and future , 1997 .

[30]  J. L. Barker,et al.  Landsat MSS and TM post-calibration dynamic ranges , 1986 .

[31]  Carsten Jürgens,et al.  The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data , 1997 .

[32]  B. E. L Aw,et al.  Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA , 2004 .

[33]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[34]  Kass Green Landsat in Context: The Land Remote Sensing Business Model , 2006 .

[35]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[36]  S. Sader,et al.  Detection of forest harvest type using multiple dates of Landsat TM imagery , 2002 .

[37]  Scott L. Powell,et al.  Forest Disturbance and North American Carbon Flux , 2008 .

[38]  J. Townshend,et al.  Detection of land cover changes using MODIS 250 m data , 2002 .

[39]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[40]  M. J. Hall,et al.  The effects of afforestation and deforestation on water yields , 1996 .

[41]  C. Tucker,et al.  NASA’s Global Orthorectified Landsat Data Set , 2004 .

[42]  Julia A. Barsi,et al.  A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale , 2004 .

[43]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[44]  Xiaojun Yang,et al.  Drivers of Land-Use/Land-Cover Changes and Dynamic Modeling for the Atlanta, Georgia Metropolitan Area , 2002 .

[45]  John R. G. Townshend,et al.  Strategies for monitoring tropical deforestation using satellite data , 2000 .

[46]  D. Lu,et al.  Change detection techniques , 2004 .

[47]  Richard H. Waring,et al.  Forest Ecosystems: Analysis at Multiple Scales , 1985 .

[48]  Neal A. Scott,et al.  The net carbon flux due to deforestation and forest re‐growth in the Brazilian Amazon: analysis using a process‐based model , 2004 .

[49]  Richard A. Houghton,et al.  Why are estimates of the terrestrial carbon balance so different? , 2003 .

[50]  C. Justice,et al.  Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations , 1988 .

[51]  Darrel L. Williams,et al.  Landsat sensor performance: history and current status , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[53]  Arthur P. Cracknell,et al.  The effects of higher-order resampling on AVHRR data , 1995 .

[54]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[55]  Darrel L. Williams,et al.  Historical record of Landsat global coverage: mission operations, NSLRSDA, and International Cooperator stations , 2006 .

[56]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[57]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[58]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[59]  C. Zartman,et al.  HABITAT FRAGMENTATION IMPACTS ON EPIPHYLLOUS BRYOPHYTE COMMUNITIES IN CENTRAL AMAZONIA , 2003 .

[60]  N. El Saleous,et al.  AVHRR Land Pathfinder II (ALP II) data set: Evaluation and inter-comparison with other data sets , 2003 .

[61]  Samuel N. Goward Future of Land Remote Sensing: What is Needed , 2007 .

[62]  Margaret F. Kinnaird,et al.  Deforestation Trends in a Tropical Landscape and Implications for Endangered Large Mammals , 2003 .