Convergence analysis for a finite element approximation of a steady model for electrorheological fluids
暂无分享,去创建一个
[1] On the C1,γ(Ω¯)∩W2,2(Ω) regularity for a class of electro-rheological fluids , 2009 .
[2] Lars Diening,et al. Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .
[3] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[4] Yu. G. Reshetnyak. Estimates for certain differential operators with finite-dimensional kernel , 1970 .
[5] M. Ruzicka. Analysis of Generalized Newtonian Fluids , 2013 .
[6] W. B. Liu,et al. Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .
[7] Kumbakonam R. Rajagopal,et al. EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .
[8] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 2014 .
[9] D. Breit,et al. SOLENOIDAL LIPSCHITZ TRUNCATION FOR PARABOLIC PDEs , 2012, 1209.6522.
[10] John W. Barrett,et al. Finite element approximation of some degenerate monotone quasilinear elliptic systems , 1996 .
[11] Lars Diening,et al. Numerische Mathematik Interpolation operators in Orlicz – Sobolev spaces , 2007 .
[12] D. Sandri,et al. Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .
[13] Franco Brezzi Michel Fortin,et al. Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .
[14] Josef Málek,et al. On Analysis of Steady Flows of Fluids with Shear-Dependent Viscosity Based on the Lipschitz Truncation Method , 2003, SIAM J. Math. Anal..
[15] Grigorii Aleksandrovich Seregin,et al. Regularity for minimizers of some variational problems in plasticity theory , 1993 .
[16] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[17] John W. Barrett,et al. A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow , 1998 .
[18] H. B. Veiga,et al. Boundary Regularity of Shear Thickening Flows , 2011 .
[19] L. Diening,et al. C1,α-regularity for electrorheological fluids in two dimensions , 2007 .
[20] John W. Barrett,et al. Finite element approximation of the p-Laplacian , 1993 .
[21] M. Ruzicka,et al. An example of a space Lp(x) on which the Hardy-Littlewood maximal operator is not bounded , 2001 .
[22] Giuseppe Mingione,et al. Regularity Results for Stationary Electro-Rheological Fluids , 2002 .
[23] J. Málek,et al. On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications , 2008 .
[24] M. Ruzicka,et al. Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .
[25] M. Rao,et al. Theory of Orlicz spaces , 1991 .
[26] M. Růžička. Modeling, Mathematical and Numerical Analysis of Electrorheological Fluids , 2004 .
[27] Lars Diening,et al. Finite Element Approximation of the p(·)-Laplacian , 2015, SIAM J. Numer. Anal..
[28] M. Fuchs,et al. On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids , 2007 .
[29] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[30] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[31] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[32] 川口 光年,et al. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .
[33] M. Ružička,et al. Mathematical modeling of electrorheological materials , 2001 .
[34] Kumbakonam R. Rajagopal,et al. On the modeling of electrorheological materials , 1996 .
[35] Andreas Prohl,et al. Convergence Analysis for Incompressible Generalized Newtonian Fluid Flows with Nonstandard Anisotropic Growth Conditions , 2010, SIAM J. Numer. Anal..
[36] P. Hästö,et al. Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .
[37] M. Fuchs,et al. A regularity result for stationary electrorheological fluids in two dimensions , 2004 .
[38] Lars Diening,et al. On the Finite Element Approximation of p-Stokes Systems , 2012, SIAM J. Numer. Anal..
[39] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .