Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer

[1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL.

[1]  Bonnie J. Berdahl,et al.  The Viking Gas Exchange Experiment results from Chryse and Utopia surface samples , 1977 .

[2]  K. Keil,et al.  Signatures of the martian atmosphere in glass of the Zagami meteorite. , 1995, Science.

[3]  F. Fanale,et al.  Seasonal carbon dioxide exchange between the regolith and atmosphere of Mars: Experimental and theoretical studies , 1982 .

[4]  Jane L. Fox,et al.  The 15N/14N isotope fractionation in dissociative recombination of N2 + , 1997 .

[5]  M. McElroy,et al.  Composition and Structure of the Venus Atmosphere: Results from Pioneer Venus , 1979, Science.

[6]  A. Nier,et al.  Isotopic Composition of Nitrogen: Implications for the Past History of Mars' Atmosphere , 1976, Science.

[7]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[8]  K. Mathew,et al.  Ancient Martian nitrogen , 2000 .

[9]  John H. Jones,et al.  Possible Detection of Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument , 2013 .

[10]  C. McKay,et al.  The nitrogen cycle on Mars : Impact decomposition of near-surface nitrates as a source for a nitrogen steady state , 2008 .

[11]  A. John Mallinckrodt,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1993 .

[12]  Christopher R. Webster,et al.  Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover , 2013, Science.

[13]  Robert M. Haberle,et al.  Global warming and climate forcing by recent albedo changes on Mars , 2007, Nature.

[14]  V. Sautter,et al.  Tissint Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of Mars , 2012, Science.

[15]  S. Schwenzer,et al.  Noble gases in mineral separates from three shergottites: Shergotty, Zagami, and EETA79001 , 2007 .

[16]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[17]  Andrew Steele,et al.  Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere , 2013, Science.

[18]  R. Wiens,et al.  The case for a Martian origin of the shergottites. II - Trapped and indigenous gas components in EETA 79001 glass , 1986 .

[19]  D. Bogard,et al.  Martian Gases in an Antarctic Meteorite? , 1983, Science.

[20]  J. Fox,et al.  Nitrogen Escape from Mars , 1983 .

[21]  Tobias Owen,et al.  The composition and early history of the atmosphere of Mars , 1992 .

[22]  D. Ming,et al.  The Sample Analysis at Mars Investigation and Instrument Suite , 2012 .

[23]  Robert O. Pepin,et al.  The case for a martian origin of the shergottites: nitrogen and noble gases in EETA 79001 , 1984 .

[24]  J. Pollack,et al.  Mars - Epochal climate change and volatile history , 1992 .

[25]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[26]  R. Haberle,et al.  Global warming and climate forcing by recent albedo changes on Mars , 2007, Nature.

[27]  B. Jakosky,et al.  Mars atmosphere loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape , 1994 .

[28]  Margarita López Martínez,et al.  Unified equations for the slope, intercept, and standard errors of the best straight line , 2004 .

[29]  Jane L. Fox,et al.  Isotope Fractionation in Dissociative Recombination of N 2 , 1995 .

[30]  R. Wiens,et al.  A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples , 2011, Science.

[31]  B. Jakosky Mars volatile evolution: Evidence from stable isotopes , 1991 .

[32]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[33]  F. Fanale,et al.  Regolith-atmosphere exchange of water and carbon dioxide on Mars - Effects on atmospheric history and climate change , 1982 .

[34]  François Leblanc,et al.  Mars atmospheric escape and evolution; interaction with the solar wind , 2004 .

[35]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[36]  T. Wydeven,et al.  Chemical interpretation of Viking Lander 1 life detection experiment , 1978, Nature.

[37]  A. Nier,et al.  Composition and structure of Mars' Upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2 , 1977 .

[38]  D. Hunten,et al.  The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe , 2005, Nature.

[39]  M C Malin,et al.  Observational Evidence for an Active Surface Reservoir of Solid Carbon Dioxide on Mars , 2001, Science.