Edge Version of Metric Dimension and Doubly Resolving Sets of the Necklace Graph

Consider an undirected and connected graph G = ( V G , E G ) , where V G and E G represent the set of vertices and the set of edges respectively. The concept of edge version of metric dimension and doubly resolving sets is based on the distances of edges in a graph. In this paper, we find the edge version of metric dimension and doubly resolving sets for the necklace graph.

[1]  Jun Yue,et al.  On the edge metric dimension of graphs , 2020 .

[2]  I. Tomescu,et al.  R-Sets and Metric Dimension of Necklace Graphs , 2015 .

[3]  Martin Knor,et al.  Wiener Index of Line Graphs , 2014 .

[4]  N. Duncan Leaves on trees , 2014 .

[5]  Jozef Kratica,et al.  Minimal doubly resolving sets of prism graphs , 2013 .

[6]  P. Cameron,et al.  Base size, metric dimension and other invariants of groups and graphs , 2011 .

[7]  Min Xu,et al.  On the metric dimension of line graphs , 2013, Discret. Appl. Math..

[8]  Jozef Kratica,et al.  Minimal doubly resolving sets and the strong metric dimension of Hamming graphs , 2012 .

[9]  G. Chartrand,et al.  The theory and applications of resolvability in graphs: A survey , 2003 .

[10]  H. B. Walikar,et al.  DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS , 2009 .

[11]  L. Lovász,et al.  On a Family of Planar Bicritical Graphs , 1975 .

[12]  Ivan Gutman,et al.  THE EDGE VERSIONS OF THE WIENER INDEX , 2009 .

[13]  M. Imran,et al.  ON RESOLVABILITY IN DOUBLE-STEP CIRCULANT GRAPHS , 2014 .

[14]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[15]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[16]  Roi Krakovski,et al.  On Wiener index of graphs and their line graphs , 2010 .

[17]  Linda Eroh,et al.  Metric dimension and zero forcing number of two families of line graphs , 2012, 1207.6127.

[18]  Lan Xu,et al.  Topological indices of the line graph of subdivision graphs and their Schur-bounds , 2015, Appl. Math. Comput..

[19]  Andrzej Proskurowski,et al.  On Halin graphs , 1983 .

[20]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[21]  Ismael González Yero,et al.  Uniquely identifying the edges of a graph: The edge metric dimension , 2016, Discret. Appl. Math..

[22]  ALI AHMAD,et al.  MINIMAL DOUBLY RESOLVING SETS OF NECKLACE GRAPH , 2018 .

[23]  Milica Stojanovic,et al.  Minimal doubly resolving sets and the strong metric dimension of some convex polytopes , 2012, Appl. Math. Comput..