Combining volatility and smoothing forecasts of UK demand for international tourism

Abstract Univariate volatility models are applied to UK tourism demand to the country's most popular international destinations. Volatility is a concept borrowed from Finance. The fact that significant volatility models are found for ten of the twelve destinations examined shows that the volatility concept has relevance to tourism demand. Volatility models are able to quantify the impacts of positive and negative shocks on tourism demand. The impacts of negative shocks vary in magnitude and duration according to the destination involved and the nature of the shock. The forecasting capability of these models has never been assessed in the tourism field. They are shown to generate highly accurate forecasts, but become optimal when combined with forecasts obtained from exponential smoothing models. Two methods of combining individual forecasts are considered. Bias in individual volatility and smoothing models and in combinations of them is examined.

[1]  W. Robinson,et al.  Modelling and Forecasting Exchange Rate Dynamics in Jamaica: an Application of Asymmetric Volatility Models , 2005 .

[2]  Douglas C. Frechtling,et al.  Forecasting tourism demand , 2001 .

[3]  John T. Coshall The Threat of Terrorism as an Intervention on International Travel Flows , 2003 .

[4]  A. Pizam,et al.  Tourism, crime and international security issues. , 1996 .

[5]  USDA Production Forecasts for Pork, Beef, and Broilers: A Further Evaluation , 2001 .

[6]  C. Lim,et al.  Time Series Forecasts of International Travel Demand for Australia , 2002 .

[7]  Richard G. Harris,et al.  Applied Time Series Modelling and Forecasting , 2003 .

[8]  A. Lockwood,et al.  Tourism and Hospitality in the 21st Century , 2009 .

[9]  W. Gartner,et al.  The Impact of Tiananmen Square on China's Tourism Image , 1992 .

[10]  Stephen F. Witt,et al.  Factors Influencing Demand for International Tourism: Tourism Demand Analysis Using Structural Equation Modelling, Revisited , 2001 .

[11]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[12]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[13]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[14]  I. Moosa,et al.  Seasonal Behaviour of Monthly International Tourist Flows: Specification and Implications for Forecasting Models , 2001 .

[15]  Fong-Lin Chu,et al.  A fractionally integrated autoregressive moving average approach to forecasting tourism demand , 2007, Tourism Management.

[16]  Yiu-Man Chan,et al.  Forecasting Tourism: A Sine Wave Time Series Regression Approach , 1993 .

[17]  Tim Bollerslev,et al.  High Frequency Data, Frequency Domain Inference and Volatility Forecasting , 1999 .

[18]  Pauline J. Sheldon,et al.  Forecasting Tourism: Expenditures versus Arrivals , 1993 .

[19]  Haiyan Song,et al.  Tourism forecasting: accuracy of alternative econometric models , 2003 .

[20]  Michael K. Evans,et al.  Practical Business Forecasting , 2002 .

[21]  M. Clements,et al.  The impact of political instability on a fragile tourism product. , 1998 .

[22]  Gang Li,et al.  Time varying parameter and fixed parameter linear AIDS: An application to tourism demand forecasting , 2006 .

[23]  Joanne F. Tynon,et al.  Adapting a Tourism Crime Typology: Classifying Outdoor Recreation Crime , 2006 .

[24]  Everette S. Gardner,et al.  Exponential smoothing: The state of the art , 1985 .

[25]  Ken Holden,et al.  Combining forecasts, encompassing and the properties of UK macroeconomic forecasts , 1997 .

[26]  Stephen F. Witt,et al.  Forecastin Domestic Tourism Demand: Application to Las Vegas Arrivals Data , 1992 .

[27]  Bernard J. Morzuch,et al.  Evaluating Time-Series Models to Forecast the Demand for Tourism in Singapore , 2005 .

[28]  J. Zakoian Threshold heteroskedastic models , 1994 .

[29]  Lori B. Shelby,et al.  No-escape natural disaster: Mitigating Impacts on Tourism , 2004 .

[30]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[31]  S. F. Witt,et al.  Forecasting the Demand for International Business Tourism , 2003 .

[32]  Jordi Pons,et al.  The accuracy of IMF and OECD forecasts for G7 countries , 2000 .

[33]  Daniel B. Nelson,et al.  Inequality Constraints in the Univariate GARCH Model , 1992 .

[34]  John T. Coshall Time Series Analyses of UK Outbound Travel by Air , 2006 .

[35]  Haiyan Song,et al.  Statistical Testing in Forecasting Model Selection , 2003 .

[36]  Michael McAleer,et al.  Modelling the uncertainty in monthly international tourist arrivals to the Maldives , 2007 .

[37]  P. Newbold,et al.  Tests for Forecast Encompassing , 1998 .

[38]  Kevin K. F. Wong,et al.  Effects of News Shock on Inbound Tourist Demand Volatility in Korea , 2006 .

[39]  P. Perron,et al.  Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power , 2001 .

[40]  Michael McAleer,et al.  A seasonal analysis of Asian tourist arrivals to Australia , 2000 .

[41]  K. Kok,et al.  A comparison forecasting models for ASEAN equity markets , 2005 .

[42]  J. Scott Armstrong,et al.  Principles of forecasting : a handbook for researchers and practitioners , 2001 .

[43]  Chris Brooks,et al.  Introductory Econometrics for Finance , 2002 .

[44]  Stephen F. Witt,et al.  Tourism Forecasting: Error Magnitude, Direction of Change Error, and Trend Change Error , 1991 .

[45]  Ying Chih Chen,et al.  A Study on the Impact of SARS on the Forecast of Visitor Arrivals to China , 2007 .

[46]  Fong-Lin Chu,et al.  Forecasting tourism demand in asian-pacific countries , 1998 .

[47]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[48]  Stavros Degiannakis,et al.  The Use of GARCH Models in VaR Estimation , 2004 .

[49]  Fong-Lin Chu,et al.  Forecasting tourism: a combined approach , 1998 .

[50]  Michael McAleer,et al.  MONTHLY SEASONAL VARIATIONS: ASIAN TOURISM TO AUSTRALIA , 2001 .

[51]  Kevin K. F. Wong,et al.  Tourism forecasting: To combine or not to combine? , 2007 .

[52]  S. F. Witt,et al.  Univariate versus multivariate time series forecasting: an application to international tourism demand , 2003 .

[53]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[54]  S. Yoder,et al.  Recovery From Natural Disaster: Travel Writers And Tourist Destinations , 1991 .

[55]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[56]  Henghsiu Tsai,et al.  A NOTE ON INEQUALITY CONSTRAINTS IN THE GARCH MODEL , 2008, Econometric Theory.

[57]  V. Cho A comparison of three different approaches to tourist arrival forecasting , 2003 .

[58]  A. Israeli,et al.  Hospitality crisis management practices: the Israeli case , 2003 .

[59]  D. Peel,et al.  On Testing for Unbiasedness and Efficiency of Forecasts , 1990 .

[60]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[61]  Jae H. Kim Forecasting Monthly Tourist Departures from Australia , 1999 .

[62]  M. Sinclair,et al.  International tourism and export instability , 1990 .

[63]  Gang Li,et al.  Tourism Demand Forecasting: A Time Varying Parameter Error Correction Model , 2006 .

[64]  L. Turner,et al.  Regional Data Forecasting Accuracy: The Case of Thailand , 2006 .