Superconvergence analysis of FEM and SDFEM on graded meshes for a problem with characteristic layers

We consider a singularly perturbed convection-diffusion with exponential and characteristic boundary layers. The problem is numerically solved by the FEM and SDFEM method with bilinear elements on a graded mesh. For the FEM we prove almost uniform convergence and superconvergence. The use of graded mesh allows for the SDFEM to prove almost uniform esimates in the SD norm, which is not possible for Shishkin type meshes.

[1]  Torsten Linß,et al.  Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers , 2008 .

[2]  Natalia Kopteva,et al.  How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers? , 2004 .

[3]  P. Zhu,et al.  The streamline-diffusion finite element method on graded meshes for a convection–diffusion problem , 2019, Applied Numerical Mathematics.

[4]  Ricardo G. Durán,et al.  Superconvergence for finite element approximation of a convection–diffusion equation using graded meshes , 2012 .

[5]  R. Bruce Kellogg,et al.  Corner singularities and boundary layers in a simple convection–diffusion problem☆ , 2005 .

[6]  JohnM . Miller,et al.  Robust Computational Techniques for Boundary Layers , 2000 .

[7]  D. Praetorius,et al.  Optimal adaptivity for the SUPG finite element method , 2018, Computer Methods in Applied Mechanics and Engineering.

[8]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[9]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[10]  S. Franz,et al.  Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection–diffusion problem with characteristic layers , 2008 .

[11]  Hans-Görg Roos Optimal Convergence of Basic Schemes for Elliptic Boundary Value Problems with Strong Parabolic Layers , 2002 .

[12]  Xiaowei Liu,et al.  Analysis of the SDFEM in a streamline diffusion norm for singularly perturbed convection diffusion problems , 2017, Appl. Math. Lett..

[13]  R. Bruce Kellogg,et al.  Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities , 2011, Math. Comput..

[14]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..

[15]  Xiaowei Liu,et al.  Analysis of the SDFEM for convection-diffusion problems with characteristic layers , 2015, Appl. Math. Comput..

[16]  S. Franz Convergence of local projection stabilisation finite element methods for convection–diffusion problems on layer-adapted meshes , 2017 .

[17]  Finite element approximation of convection diffusion problems using graded meshes , 2006 .

[18]  Hans-Görg Roos,et al.  Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers , 2005, Numerische Mathematik.

[19]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[20]  Volker John,et al.  A robust SUPG norm a posteriori error estimator for stationary convection-diffusion equations , 2013 .

[21]  Eugene C. Gartland,et al.  Graded-mesh difference schemes for singularly perturbed two-point boundary value problems , 1988 .

[22]  On Finite Difference Fitted Schemes for Singularly Perturbed Boundary Value Problems with a Parabolic Boundary Layer , 1997 .

[23]  Xiaowei Liu,et al.  Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with characteristic layers , 2018, Numerical Algorithms.

[24]  Xiaowei Liu,et al.  Analysis of SDFEM on Shishkin Triangular Meshes and Hybrid Meshes for Problems with Characteristic Layers , 2016, J. Sci. Comput..