Fitch-Style Modal Lambda Calculi

Fitch-style modal deduction, in which modalities are eliminated by opening a subordinate proof, and introduced by shutting one, were investigated in the 1990s as a basis for lambda calculi. We show that such calculi have good computational properties for a variety of intuitionistic modal logics. Semantics are given in cartesian closed categories equipped with an adjunction of endofunctors, with the necessity modality interpreted by the right adjoint. Where this functor is an idempotent comonad, a coherence result on the semantics allows us to present a calculus for intuitionistic S4 that is simpler than others in the literature. We show the calculi can be extended a la tense logic with the left adjoint of necessity, and are then complete for the categorical semantics.

[1]  Michael Shulman,et al.  Brouwer's fixed-point theorem in real-cohesive homotopy type theory , 2015, Mathematical Structures in Computer Science.

[2]  Philip Wadler,et al.  Propositions as types , 2015, Commun. ACM.

[3]  Bas Spitters,et al.  Internal Universes in Models of Homotopy Type Theory , 2018, FSCD.

[4]  Rasmus Ejlers Møgelberg,et al.  Intensional Type Theory with Guarded Recursive Types qua Fixed Points on Universes , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[5]  Matías Menni About И-quantifiers , 2003, Appl. Categorical Struct..

[6]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[7]  Haskell B. Curry,et al.  A Theory Of Formal Deducibility , 1950 .

[8]  M. Sørensen,et al.  Lectures on the Curry-Howard Isomorphism , 2013 .

[9]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[10]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[11]  Richmond H. Thomason,et al.  Symbolic logic : an introduction , 1969 .

[12]  Vaj Tijn Borghuis Coming to terms with modal logic : on the interpretation of modalities in typed lambda-calculus , 1994 .

[13]  Michael Mendler,et al.  Propositional Lax Logic , 1997, Inf. Comput..

[14]  Rasmus Ejlers Møgelberg,et al.  Denotational semantics for guarded dependent type theory , 2018, Mathematical Structures in Computer Science.

[15]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[16]  Dov M. Gabbay,et al.  The Functional Interpretation of Modal Necessity , 1997 .

[17]  Conor McBride,et al.  Applicative programming with effects , 2008, J. Funct. Program..

[18]  Rajeev Goré,et al.  Cut-elimination and Proof Search for Bi-Intuitionistic Tense Logic , 2010, Advances in Modal Logic.

[19]  Yokota Shinichi General Characterization Results on Intuitionistic Modal Propositional Logics , 1985 .

[20]  S. Eilenberg,et al.  Adjoint functors and triples , 1965 .

[21]  K. Dosen,et al.  Models for normal intuitionistic modal logics , 1984 .

[22]  G. A. Kavvos,et al.  Dual-context calculi for modal logic , 2016, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[23]  S. Martini,et al.  A Computational Interpretation of Modal Proofs , 1996 .

[24]  Daniel R. Licata,et al.  A Fibrational Framework for Substructural and Modal Logics , 2017, FSCD.

[25]  Tadeusz Litak,et al.  Constructive Modalities with Provability Smack , 2017, ArXiv.

[26]  Robert Atkey,et al.  Productive coprogramming with guarded recursion , 2013, ICFP.

[27]  Rasmus Ejlers Møgelberg,et al.  The clocks are ticking: No more delays! , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[28]  Frank Pfenning,et al.  A modal analysis of staged computation , 1996, POPL '96.

[29]  Urs Schreiber,et al.  Differential cohomology in a cohesive infinity-topos , 2013, 1310.7930.

[30]  G. A. Kavvos The Many Worlds of Modal λ-calculi: I. Curry-Howard for Necessity, Possibility and Time , 2016, ArXiv.

[31]  Bas Spitters,et al.  Modalities in homotopy type theory , 2020, Log. Methods Comput. Sci..

[32]  J. Girard,et al.  Proofs and types , 1989 .

[33]  Valeria C V de Paiva,et al.  Extended Curry-Howard Correspondence for a Basic Constructive Modal Logic , 2001 .

[34]  Rasmus Ejlers Møgelberg,et al.  Guarded Dependent Type Theory with Coinductive Types , 2016, FoSSaCS.

[35]  Valeria de Paiva,et al.  Basic Constructive Modality , 2011 .

[36]  W. B. Ewald,et al.  Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.

[37]  Jouni Järvinen,et al.  Intuitionistic propositional logic with Galois connections , 2010, Log. J. IGPL.

[38]  Heinrich Wansing,et al.  Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..

[39]  F. Pfenning,et al.  On a Modal -calculus for S4 ? , 1995 .

[40]  Andreas Abel,et al.  A Formalized Proof of Strong Normalization for Guarded Recursive Types , 2014, APLAS.

[41]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.