Calibration of discrete element modeling: Scaling laws and dimensionless analysis

Abstract In this paper, dynamic similarity conditions are derived for discrete element simulations by non-dimensionalising the governing equations. These conditions must be satisfied so that the numerical model is a good representation of the physical phenomenon. For a pure mechanical system, if three independent ratios of the corresponding quantities between the two models are set, then the ratios of other quantities must be chosen according to the similarity principles. The scalability of linear and non-linear contact laws is also investigated. Numerical tests of 3D uni-axial compression are carried out to verify the theoretical results. Another example is presented to show how to calibrate the model according to laboratory data and similarity conditions. However, it is impossible to reduce computer time by scaling up or down certain parameters and continue to uphold the similarity conditions. The results in this paper provide guidelines to assist discrete element modelers in setting up the model parameters in a physically meaningful way.

[1]  P. Mora,et al.  The ESyS_Particle: A New 3-D Discrete Element Model with Single Particle Rotation , 2009 .

[2]  Peter Mora,et al.  A Parallel Implementation of the Lattice Solid Model for the Simulation of Rock Mechanics and Earthquake Dynamics , 2004 .

[3]  Modeling of Fracture and Damage in Rock by the Bonded-Particle Model , 2002 .

[4]  P. Cleary,et al.  Large-scale landslide simulations : global deformation, velocities and basal friction , 1995 .

[5]  Peter Mora,et al.  Macroscopic elastic properties of regular lattices , 2008 .

[6]  Peter Mora,et al.  a Lattice Solid Model for the Nonlinear Dynamics of Earthquakes , 1993 .

[7]  P. Cundall,et al.  A bonded-particle model for rock , 2004 .

[8]  S. P. Hunt,et al.  Modelling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method , 2003 .

[9]  Fujiu Ke,et al.  Numerical Simulation of Rock Failure and Earthquake Process on Mesoscopic Scale , 2000 .

[10]  Peter Mora,et al.  Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model , 2006 .

[11]  Fernando Alonso-Marroquin,et al.  A finite deformation method for discrete modeling: particle rotation and parameter calibration , 2009 .

[12]  Mikio Sakai,et al.  Parallel computing of discrete element method on multi-core processors , 2011 .

[13]  David R. Owen,et al.  Discrete element modelling of large scale particle systems—I: exact scaling laws , 2014, CPM 2014.

[14]  Brian McPherson,et al.  Simulation of sedimentary rock deformation: Lab‐scale model calibration and parameterization , 2002 .

[15]  Peter Mora,et al.  Simulation of the Micro-physics of Rocks Using LSMearth , 2002 .

[16]  Yuya Matsuda,et al.  Numerical simulation of rock fracture using three-dimensional extended discrete element method , 2002 .

[17]  Paul W. Cleary,et al.  DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills , 2000 .

[18]  Peter Mora,et al.  Numerical simulation of earthquake faults with gouge: Toward a comprehensive explanation for the heat flow paradox , 1998 .

[19]  Julia K. Morgan,et al.  Particle Dynamics Simulations of Rate- and State-dependent Frictional Sliding of Granular Fault Gouge , 2004 .

[20]  H. Sakaguchi,et al.  Hybrid Modelling of Coupled Pore Fluid-solid Deformation Problems , 2000 .

[21]  F. Donze,et al.  Discrete element modelling of concrete submitted to dynamic loading at high strain rates , 2004 .

[22]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[23]  Peter Mora,et al.  Parallel 3-D Simulation of a Fault Gouge Using the Lattice Solid Model , 2006 .

[24]  Fulvio Tonon,et al.  Calibration of a discrete element model for intact rock up to its peak strength , 2010 .

[25]  J. Michael Rotter,et al.  Numerical Modeling of Silo Filling. II: Discrete Element Analyses , 1999 .

[26]  David R. Owen,et al.  On upscaling of discrete element models: similarity principles , 2009 .

[27]  P. Mora,et al.  Simulation of the Load-Unload Response Ratio and Critical Sensitivity in the Lattice Solid Model , 2002 .

[28]  Wei Ge,et al.  Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing , 2011 .

[29]  H. Goldstein,et al.  Classical Mechanics , 1951, Mathematical Gazette.

[30]  Siegmar Wirtz,et al.  A coupled fluid dynamic-discrete element simulation of heat and mass transfer in a lime shaft kiln , 2010 .

[31]  Peter Mora,et al.  Simulation of the frictional stick-slip instability , 1994 .

[32]  Yucang Wang,et al.  A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations , 2009 .

[33]  Extension of the Lattice Solid Model to Incorporate Temperature Related Effects , 2000 .

[34]  R. Paul Young,et al.  Micromechanical modeling of cracking and failure in brittle rocks , 2000 .

[35]  Ching S. Chang Discrete element method for slope stability analysis , 1992 .

[36]  H. L. Li,et al.  Damage Localization, Sensitivity of Energy Release and the Catastrophe Transition , 2002 .

[37]  Yasuhiro Nakahara,et al.  Parallel Computing of Discrete Element Method on GPU , 2013, ArXiv.

[38]  F. Donze,et al.  Modeling fractures in rock blasting , 1997 .