HEY1-mediated cisplatin resistance in lung adenocarcinoma via epithelial–mesenchymal transition

[1]  A. Niapour,et al.  Acquisition of paclitaxel resistance modulates the biological traits of gastric cancer AGS cells and facilitates epithelial to mesenchymal transition and angiogenesis , 2022, Naunyn-Schmiedeberg's Archives of Pharmacology.

[2]  P. Tchounwou,et al.  Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy , 2021, Journal of experimental pharmacology.

[3]  M. Ashrafizadeh,et al.  Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. , 2021, Current cancer drug targets.

[4]  J. Califano,et al.  Reciprocal activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma , 2020, International journal of oncology.

[5]  Yi-Wen Chang,et al.  STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis , 2020, Oncogene.

[6]  Lihua Jiang,et al.  Long Non-Coding RNA SPRY4-IT1 Reverses Cisplatin Resistance by Downregulating MPZL-1 via Suppressing EMT in NSCLC , 2020, OncoTargets and therapy.

[7]  A. Jemal,et al.  Cancer statistics, 2020 , 2020, CA: a cancer journal for clinicians.

[8]  Ruei-Yue Liang,et al.  HR23A-knockdown lung cancer cells exhibit epithelial-to-mesenchymal transition and gain stemness properties through increased Twist1 stability. , 2019, Biochimica et biophysica acta. Molecular cell research.

[9]  Gong Yang,et al.  The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy , 2019, Oncogenesis.

[10]  Yongfang Yuan,et al.  Integration of metabolomics and transcriptomics to reveal metabolic characteristics and key targets associated with cisplatin resistance in non-small cell lung cancer. , 2019, Journal of proteome research.

[11]  A. Orian,et al.  The transcription factor Hey and nuclear lamins specify and maintain cell identity , 2019, eLife.

[12]  Sumit Ghosh Cisplatin: The first metal based anticancer drug. , 2019, Bioorganic chemistry.

[13]  R. Najafi,et al.  PD‐1/PD‐L1 immune checkpoint: Potential target for cancer therapy , 2018, Journal of cellular physiology.

[14]  F. Cao,et al.  COX-2 potentiates cisplatin resistance of non-small cell lung cancer cells by promoting EMT in an AKT signaling pathway-dependent manner. , 2019, European review for medical and pharmacological sciences.

[15]  R. Weinberg,et al.  Epithelial-to-mesenchymal transition in cancer: complexity and opportunities , 2018, Frontiers of Medicine.

[16]  Eleni Anastasiadou,et al.  The Nefarious Nexus of Noncoding RNAs in Cancer , 2018, International journal of molecular sciences.

[17]  W. Xia,et al.  FGFR1-ERK1/2-SOX2 axis promotes cell proliferation, epithelial–mesenchymal transition, and metastasis in FGFR1-amplified lung cancer , 2018, Oncogene.

[18]  S. Fan,et al.  Roles of microRNAs in the resistance to platinum based chemotherapy in the non-small cell lung cancer , 2017, Journal of Cancer.

[19]  S. Imbeaud,et al.  Epithelial-to-Mesenchymal Transition and MicroRNAs in Lung Cancer , 2017, Cancers.

[20]  Ziheng Zhuang,et al.  FEN1 promotes tumor progression and confers cisplatin resistance in non‐small‐cell lung cancer , 2017, Molecular oncology.

[21]  Xueqiong Zhu,et al.  Molecular mechanisms of cisplatin resistance in cervical cancer , 2016, Drug design, development and therapy.

[22]  L. Amable Cisplatin resistance and opportunities for precision medicine. , 2016, Pharmacological research.

[23]  D. Fennell,et al.  Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. , 2016, Cancer treatment reviews.

[24]  T. Yamamoto,et al.  Hairy/enhancer-of-split related with YRPW motif protein 1 promotes osteosarcoma metastasis via matrix metallopeptidase 9 expression , 2015, British Journal of Cancer.

[25]  Yuanfang Ma,et al.  Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop , 2014, Oncotarget.

[26]  Hao Liu,et al.  SET-mediated NDRG1 inhibition is involved in acquisition of epithelial-to-mesenchymal transition phenotype and cisplatin resistance in human lung cancer cell. , 2014, Cellular signalling.

[27]  P. Tchounwou,et al.  Cisplatin in cancer therapy: molecular mechanisms of action. , 2014, European journal of pharmacology.

[28]  M. Gessler,et al.  Hey bHLH transcription factors. , 2014, Current topics in developmental biology.

[29]  Jing Liu,et al.  The Long Noncoding RNA HOTAIR Contributes to Cisplatin Resistance of Human Lung Adenocarcinoma Cells via downregualtion of p21WAF1/CIP1 Expression , 2013, PloS one.

[30]  N. Zeps,et al.  Notch-induced transcription factors are predictive of survival and 5-fluorouracil response in colorectal cancer patients , 2013, British Journal of Cancer.

[31]  L. Galluzzi,et al.  Molecular mechanisms of cisplatin resistance , 2012, Oncogene.

[32]  B. O'Sullivan,et al.  Factors contributing to the efficacy of concurrent-adjuvant chemotherapy for locoregionally advanced nasopharyngeal carcinoma: combined analyses of NPC-9901 and NPC-9902 Trials. , 2011, European journal of cancer.

[33]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[34]  Anindya Dutta,et al.  MicroRNAs in cancer. , 2009, Annual review of pathology.

[35]  O. Brodin,et al.  Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials , 1995 .