On quantum Rényi entropies: A new generalization and some properties
暂无分享,去创建一个
Serge Fehr | Marco Tomamichel | Fr'ed'eric Dupuis | Martin Muller-Lennert | Oleg Szehr | M. Tomamichel | F. Dupuis | S. Fehr | O. Szehr | Martin Muller-Lennert
[1] O. Klein. Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre , 1931 .
[2] M. Sion. On general minimax theorems , 1958 .
[3] Salman Beigi. Quantum Rényi Divergence Satisfies Data Processing Inequality , 2013, ArXiv.
[4] M. Ruskai. Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.
[5] Serge Fehr,et al. On quantum R\'enyi entropies: a new definition, some properties and several conjectures , 2013 .
[6] Salman Beigi,et al. Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.
[7] G. Lindblad. Completely positive maps and entropy inequalities , 1975 .
[8] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[9] Elliott H. Lieb,et al. Monotonicity of a relative Rényi entropy , 2013, ArXiv.
[10] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[11] B. Zegarliński,et al. Hypercontractivity in Noncommutative LpSpaces , 1999 .
[12] G. Lindblad. Expectations and entropy inequalities for finite quantum systems , 1974 .
[13] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[14] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[15] K. Audenaert,et al. Quantum state discrimination bounds for finite sample size , 2012, 1204.0711.
[16] Masahito Hayashi,et al. On error exponents in quantum hypothesis testing , 2004, IEEE Transactions on Information Theory.
[17] H. Araki. On an inequality of Lieb and Thirring , 1990 .
[18] Imre Csiszár. Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.
[19] R. Renner,et al. Uncertainty relation for smooth entropies. , 2010, Physical review letters.
[20] F. Hiai,et al. Error exponents in hypothesis testing for correlated states on a spin chain , 2007, 0707.2020.
[21] Dong Yang,et al. Strong converse for the classical capacity of entanglement-breaking channels , 2013, ArXiv.
[22] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[23] D. Petz. Quasi-entropies for finite quantum systems , 1986 .
[24] Milán Mosonyi,et al. On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.
[25] Milán Mosonyi,et al. Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.
[26] Omar Fawzi,et al. Entanglement Sampling and Applications , 2013, IEEE Transactions on Information Theory.
[27] Tomohiro Ogawa,et al. Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.
[28] Patrick J. Coles,et al. Uncertainty relations from simple entropic properties. , 2011, Physical review letters.
[29] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .
[30] N. Datta,et al. A limit of the quantum Rényi divergence , 2013, 1308.5961.
[31] Maassen,et al. Generalized entropic uncertainty relations. , 1988, Physical review letters.
[32] W. Stinespring. Positive functions on *-algebras , 1955 .
[33] S. Wehner,et al. A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.
[34] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[35] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[36] Nilanjana Datta,et al. Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.