On quantum Rényi entropies: A new generalization and some properties

The Renyi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Renyi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Renyi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

[1]  O. Klein Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre , 1931 .

[2]  M. Sion On general minimax theorems , 1958 .

[3]  Salman Beigi Quantum Rényi Divergence Satisfies Data Processing Inequality , 2013, ArXiv.

[4]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[5]  Serge Fehr,et al.  On quantum R\'enyi entropies: a new definition, some properties and several conjectures , 2013 .

[6]  Salman Beigi,et al.  Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.

[7]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[8]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[9]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[10]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[11]  B. Zegarliński,et al.  Hypercontractivity in Noncommutative LpSpaces , 1999 .

[12]  G. Lindblad Expectations and entropy inequalities for finite quantum systems , 1974 .

[13]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[14]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[15]  K. Audenaert,et al.  Quantum state discrimination bounds for finite sample size , 2012, 1204.0711.

[16]  Masahito Hayashi,et al.  On error exponents in quantum hypothesis testing , 2004, IEEE Transactions on Information Theory.

[17]  H. Araki On an inequality of Lieb and Thirring , 1990 .

[18]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[19]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[20]  F. Hiai,et al.  Error exponents in hypothesis testing for correlated states on a spin chain , 2007, 0707.2020.

[21]  Dong Yang,et al.  Strong converse for the classical capacity of entanglement-breaking channels , 2013, ArXiv.

[22]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[23]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[24]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[25]  Milán Mosonyi,et al.  Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.

[26]  Omar Fawzi,et al.  Entanglement Sampling and Applications , 2013, IEEE Transactions on Information Theory.

[27]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[28]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[29]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[30]  N. Datta,et al.  A limit of the quantum Rényi divergence , 2013, 1308.5961.

[31]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[32]  W. Stinespring Positive functions on *-algebras , 1955 .

[33]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[34]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[35]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[36]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.