Extinction thresholds: insights from simple models

There are two types of deterministic extinction thresholds: demographic thresholds such as the Allee effect, and parametric thresholds such as a critical effective colonization rate or a minimum amount of available habitat for metapopulation persistence. I introduce briefly both types of thresholds. First, I discuss the Allee effect in the context of eradication strategies of alien species. Then, I consider an example of parametric threshold: the critical amount of suitable habitat below which a metapopulation goes deterministically extinct. I review how this spatial threshold changes in relation to the level of spatial detail and the complexity of the food web. Since classical metapopulation models assume an infinite number of patches, I proceed by considering how the extinction threshold is affected by environmental variability acting on a small number of patches. Finally, I consider recent work suggesting that if the network of connectivity among patches is not random but highly heterogeneous, the extinction threshold may disappear.

[1]  Sergei Petrovskii,et al.  Allee effect makes possible patchy invasion in a predator-prey system. , 2002 .

[2]  R. Holt,et al.  Allee Effects, Invasion Pinning, and Species’ Borders , 2001, The American Naturalist.

[3]  Karl P. Schmidt,et al.  Principles of Animal Ecology , 1950 .

[4]  J. Bascompte Aggregate statistical measures and metapopulation dynamics. , 2001, Journal of theoretical biology.

[5]  R. Holt From Metapopulation Dynamics to Community Structure , 1997 .

[6]  E. Dempster Maintenance of genetic heterogeneity. , 1955, Cold Spring Harbor symposia on quantitative biology.

[7]  I. Hanski Metapopulation dynamics , 1998, Nature.

[8]  Ricard V. Solé,et al.  Habitat Fragmentation and Extinction Thresholds in Spatially Explicit Models , 1996 .

[9]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[10]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[11]  F. A. Pitelka,et al.  PRINCIPLES OF ANIMAL ECOLOGY , 1951 .

[12]  Jordi Bascompte,et al.  The Allee effect, stochastic dynamics and the eradication of alien species , 2003 .

[13]  M. Groom,et al.  Allee Effects Limit Population Viability of an Annual Plant , 1998, The American Naturalist.

[14]  Martin H. Levinson Linked: The New Science of Networks , 2004 .

[15]  J. Bascompte,et al.  Patchy Populations in Stochastic Environments: Critical Number of Patches for Persistence , 2002, The American Naturalist.

[16]  Carlos J. Melián,et al.  Food web structure and habitat loss , 2002 .

[17]  Robert M. May,et al.  Large-Scale Ecology and Conservation Biology. , 1995 .

[18]  R. Lewontin,et al.  On population growth in a randomly varying environment. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[20]  Jordi Bascompte,et al.  Metapopulation models for extinction threshold in spatially correlated landscapes. , 2002, Journal of theoretical biology.

[21]  A. King,et al.  Extinction Thresholds for Species in Fractal Landscapes , 1999 .

[22]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[23]  S. Levin,et al.  Theories of Simplification and Scaling of Spatially Distributed Processes , 2011 .

[24]  Albert-László Barabási,et al.  Linked: The New Science of Networks , 2002 .

[25]  M. Gilpin,et al.  Metapopulation Biology: Ecology, Genetics, and Evolution , 1997 .

[26]  Daniel Simberloff,et al.  Eradication of island invasives: practical actions and results achieved , 2001 .

[27]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[28]  V. Jansen,et al.  Populations can persist in an environment consisting of sink habitats only. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[30]  R. Lande,et al.  Demographic stochasticity and Allee effect on a scale with isotropic noise , 1998 .

[31]  Alessandro Vespignani,et al.  Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  P. Amarasekare,et al.  Allee Effects in Metapopulation Dynamics , 1998, The American Naturalist.

[33]  Gregory A. Elmes,et al.  Gypsy moth invasion in North America: a quantitative analysis , 1992 .

[34]  M. Nowak,et al.  Habitat destruction and the extinction debt , 1994, Nature.

[35]  R. Lande,et al.  Extinction Thresholds in Demographic Models of Territorial Populations , 1987, The American Naturalist.

[36]  P. Kareiva,et al.  Allee Dynamics and the Spread of Invading Organisms , 1993 .

[37]  Ricard V. Solé,et al.  Phase transitions and complex systems: Simple, nonlinear models capture complex systems at the edge of chaos , 1996, Complex..

[38]  J. Bascompte,et al.  Eradication thresholds in epidemiology, conservation biology and genetics. , 1998, Journal of theoretical biology.

[39]  D. Watts The “New” Science of Networks , 2004 .

[40]  John H. Lawton,et al.  Animal distributions : patterns and processes , 1994 .

[41]  Robert D. Holt,et al.  7 – From Metapopulation Dynamics to Community Structure: Some Consequences of Spatial Heterogeneity , 1997 .

[42]  W. Fagan,et al.  Invasion theory and biological control , 2002 .

[43]  R. Levins,et al.  The effect of random variations of different types on population growth. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[44]  P. Jordano,et al.  SEED DISPERSER EFFECTIVENESS: THE QUANTITY COMPONENT AND PATTERNS OF SEED RAIN FOR PRUNUS MAHALEB , 2000 .

[45]  Mats Gyllenberg,et al.  Minimum Viable Metapopulation Size , 1996, The American Naturalist.

[46]  Grenfell,et al.  Inverse density dependence and the Allee effect. , 1999, Trends in ecology & evolution.

[47]  D. Mason,et al.  Effects of habitat destruction and resource supplementation in a predator-prey metapopulation model. , 2001, Journal of theoretical biology.

[48]  Clifford A. Pickover,et al.  Fractals, Chaos, and Power Laws , 1992 .

[49]  Y. Iwasa,et al.  Establishment probability in fluctuating environments: a branching process model. , 1996, Theoretical population biology.

[50]  Solé,et al.  Effects of habitat destruction in a prey-predator metapopulation model , 1998, Journal of theoretical biology.

[51]  R. Lande Genetics and demography in biological conservation. , 1988, Science.

[52]  Otso Ovaskainen,et al.  The metapopulation capacity of a fragmented landscape , 2000, Nature.

[53]  J. Gillespie Polymorphism in Patchy Environments , 1974, The American Naturalist.

[54]  Dispersal and the persistence of populations in unstable habitats: A theoretical note , 1981, Oecologia.

[55]  H. Levene,et al.  Genetic Equilibrium When More Than One Ecological Niche is Available , 1953, The American Naturalist.

[56]  David E. Hiebeler,et al.  Populations on fragmented landscapes with spatially structured heterogeneities : Landscape generation and local dispersal , 2000 .

[57]  Otso Ovaskainen,et al.  Extinction threshold in metapopulation models , 2003 .

[58]  William J. Sutherland,et al.  What Is the Allee Effect , 1999 .

[59]  Stephens,et al.  Consequences of the Allee effect for behaviour, ecology and conservation. , 1999, Trends in ecology & evolution.

[60]  Brian Dennis,et al.  Allee effects in stochastic populations , 2002 .

[61]  Akira Sasaki,et al.  Statistical Mechanics of Population: The Lattice Lotka-Volterra Model , 1992 .

[62]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[63]  C. Dytham The effect of habitat destruction pattern on species persistence : a cellular model , 1995 .

[64]  R. Macarthur The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture , 2005 .

[65]  Robert M. May,et al.  Dynamics of metapopulations : habitat destruction and competitive coexistence , 1992 .

[66]  J. Metz,et al.  What are the advantages of dispersing; a paper by Kuno explained and extended , 1983, Oecologia.

[67]  J. Metz,et al.  An Explanation for Low Dispersal Rates: a Simulation Experiment , 1982 .

[68]  S. Nee How populations persist , 1994, Nature.

[69]  Mark Buchanan,et al.  Nexus: Small Worlds and the Groundbreaking Science of Networks , 2002 .

[70]  Hal Caswell,et al.  Habitat fragmentation and extinction thresholds on fractal landscapes , 1999 .