Karush-Kuhn-Tucker Optimality Based Local Search for Enhanced Convergence of Evolutionary Multi-Criterion Optimization Methods

Recent studies have used Karush-Kuhn-Tucker (KKT) optimality conditions to develop a KKT Proximity Measure (KKTPM) for terminating a multi-objective optimization simulation run based on theoretical convergence of solutions. In addition to determining a suitable termination condition and due to their ability to provide a single measure for convergence to Pareto-optimal solutions, the developed KKTPM can also be applied more directly to enhance the performance of an optimization algorithm. In this paper, we integrate the KKTPM information with an evolutionary multi-objective optimization (EMO) algorithm to enhance its convergence properties to Pareto-optimal solutions. Specifically, we use KKTPM to identify poorly converged nondominated solutions in every generation and apply an achievement scalarizing function based local search procedure to improve their convergence. Simulations on both constrained and unconstrained multiple and many-objective optimization problems demonstrate that the hybrid algorithm significantly improves the overall convergence properties. This study brings evolutionary optimization closer to mainstream optimization field and should motivate researchers to utilize KKTPM measure further within EMO and other numerical optimization algorithms for improving their working behaviors.

[1]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[2]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[3]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[4]  Isao Ono,et al.  Local Search for Multiobjective Function Optimization: Pareto Descent Method , 2006 .

[5]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[6]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[8]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  Hisao Ishibuchi,et al.  Performance evaluation of simple multiobjective genetic local search algorithms on multiobjective 0/1 knapsack problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[11]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  A Computationally Fast and Approximate Method for Karush-Kuhn-Tucker Proximity Measure , 2015 .

[13]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[14]  Carlos A. Coello Coello,et al.  HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[15]  Kalyanmoy Deb,et al.  Multiobjective Problem Solving from Nature: From Concepts to Applications (Natural Computing Series) , 2008 .

[16]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[17]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[18]  Kalyanmoy Deb,et al.  A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence , 2008, PPSN.

[19]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[20]  Peter A. N. Bosman,et al.  On Gradients and Hybrid Evolutionary Algorithms for Real-Valued Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[21]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[22]  Kalyanmoy Deb,et al.  Trading on infeasibility by exploiting constraint’s criticality through multi-objectivization: A system design perspective , 2007, 2007 IEEE Congress on Evolutionary Computation.

[23]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[24]  Kalyanmoy Deb,et al.  A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design , 2001, EMO.

[25]  J. M. Martínez,et al.  On sequential optimality conditions for smooth constrained optimization , 2011 .

[26]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[27]  Kalyanmoy Deb,et al.  Approximate KKT points and a proximity measure for termination , 2013, J. Glob. Optim..

[28]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[29]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[30]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[31]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[32]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[33]  Carlos A. Coello Coello,et al.  DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems , 2010, Comput. Oper. Res..

[34]  Jürgen Branke,et al.  Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression , 2009, EMO.

[35]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[36]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[37]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[38]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[39]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[40]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[41]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[42]  Kalyanmoy Deb,et al.  An Optimality Theory Based Proximity Measure for Evolutionary Multi-Objective and Many-Objective Optimization , 2015, EMO.

[43]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[44]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[45]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.