The Posterior and the Prior in Bayesian Phylogenetics

Bayesian analysis has enjoyed explosive growth in phylogenetics over the past five years. Accompanying this popularity has been increased focus on the meaning of the posterior probability (PP) and the role of the prior in phylogenetic inference. Here we discuss the behavior of the PP in Bayesian and frequentist terms and its relationship to parametric and nonparametric bootstrapping. We also review the use of priors in phylogenetics and the issues surrounding the specification of informative and minimally informative prior distributions.

[1]  W. H. Piel,et al.  An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. , 2004, Molecular biology and evolution.

[2]  EVOLUTIONARY HISTORY OF THE PARROTFISHES: BIOGEOGRAPHY, ECOMORPHOLOGY, AND COMPARATIVE DIVERSITY , 2002, Evolution; international journal of organic evolution.

[3]  J. Berger The case for objective Bayesian analysis , 2006 .

[4]  A. Leaché,et al.  Are unequal clade priors problematic for Bayesian phylogenetics? , 2006, Systematic biology.

[5]  Ziheng Yang,et al.  Branch-length prior influences Bayesian posterior probability of phylogeny. , 2005, Systematic biology.

[6]  Michael A. Newton,et al.  Bootstrapping phylogenies: Large deviations and dispersion effects , 1996 .

[7]  Elizabeth A. Thompson,et al.  Human Evolutionary Trees , 1975 .

[8]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[9]  Olivier Gascuel,et al.  On the Interpretation of Bootstrap Trees: Appropriate Threshold of Clade Selection and Induced Gain , 1996 .

[10]  Hirohisa Kishino,et al.  Very fast algorithms for evaluating the stability of ML and Bayesian phylogenetic trees from sequence data. , 2002, Genome informatics. International Conference on Genome Informatics.

[11]  S. Fienberg When did Bayesian inference become "Bayesian"? , 2006 .

[12]  Emily C. Moriarty,et al.  The importance of proper model assumption in bayesian phylogenetics. , 2004, Systematic biology.

[13]  M. Steel,et al.  On the impossibility of uniform priors on clades. , 2006, Molecular phylogenetics and evolution.

[14]  Nozer D. Singpurwalla,et al.  Non-informative priors do not exist A dialogue with José M. Bernardo , 1997 .

[15]  B. Rannala,et al.  Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. , 2004, Systematic biology.

[16]  H. D. De Kanter [The philosophy of statistics]. , 1972, Ginecología y Obstetricia de México.

[17]  Ziheng Yang,et al.  Bayesian inference in molecular phylogenetics , 2007, Mathematics of Evolution and Phylogeny.

[18]  James O. Berger,et al.  The interplay of Bayesian and frequentist analysis , 2004 .

[19]  C. P. Randle,et al.  Are Nonuniform Clade Priors Important in Bayesian Phylogenetic Analysis? A Response to Brandley et al. , 2006 .

[20]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[21]  M J Sanderson,et al.  Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). , 2000, Systematic biology.

[22]  Mark Pagel,et al.  Major fungal lineages are derived from lichen symbiotic ancestors , 2022 .

[23]  F. Lutzoni,et al.  Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. , 2003, Molecular biology and evolution.

[24]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[25]  Wen-Hsiung Li,et al.  What is the Bootstrap Technique , 1994 .

[26]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Antonis Rokas,et al.  Comparing bootstrap and posterior probability values in the four-taxon case. , 2003, Systematic biology.

[28]  Eric Vigoda,et al.  Phylogenetic MCMC Algorithms Are Misleading on Mixtures of Trees , 2005, Science.

[29]  T. Britton,et al.  Fundamental differences between the methods of maximum likelihood and maximum posterior probability in phylogenetics. , 2006, Systematic biology.

[30]  Michael J. Sanderson,et al.  Objections to Bootstrapping Phylogenies: A Critique , 1995 .

[31]  A. Zharkikh,et al.  Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. , 1992, Molecular biology and evolution.

[32]  Jonathan P. Bollback,et al.  Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology , 2001, Science.

[33]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[34]  B. M. Hill,et al.  Theory of Probability , 1990 .

[35]  M. Suchard,et al.  Bayesian selection of continuous-time Markov chain evolutionary models. , 2001, Molecular biology and evolution.

[36]  D. Lindley The Philosophy of Statistics , 2000 .

[37]  J. Huelsenbeck,et al.  Potential applications and pitfalls of Bayesian inference of phylogeny. , 2002, Systematic biology.

[38]  D. Hillis,et al.  BEST‐FIT MAXIMUM‐LIKELIHOOD MODELS FOR PHYLOGENETIC INFERENCE: EMPIRICAL TESTS WITH KNOWN PHYLOGENIES , 1998, Evolution; international journal of organic evolution.

[39]  D. Winkler,et al.  Phylogeny of the tree swallow genus, Tachycineta (Aves: Hirundinidae), by Bayesian analysis of mitochondrial DNA sequences. , 2002, Molecular phylogenetics and evolution.

[40]  Dam,et al.  Molecular Systematics of the Eastern Fence Lizard ( Sceloporus undulatus ): A Comparison of Parsimony, Likelihood, and Bayesian Approaches , 2002 .

[41]  W. Bruno,et al.  Topological bias and inconsistency of maximum likelihood using wrong models. , 1999, Molecular biology and evolution.

[42]  ' DERRICKJ.ZWICKL,et al.  Model Parameterization , Prior Distributions , and the General Time-Reversible Model in Bayesian Phylogenetics , 2005 .

[43]  D. Schiel,et al.  The Population Biology of Large Brown Seaweeds: Ecological Consequences of Multiphase Life Histories in Dynamic Coastal , 2006 .

[44]  Olivier Gascuel,et al.  Mathematics of Evolution and Phylogeny , 2005 .

[45]  Hani Doss,et al.  Phylogenetic Tree Construction Using Markov Chain Monte Carlo , 2000 .

[46]  K. Holsinger,et al.  Polytomies and Bayesian phylogenetic inference. , 2005, Systematic biology.

[47]  M A Newton,et al.  Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods , 1999, Biometrics.

[48]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[49]  Jack Sullivan,et al.  Model Selection in Phylogenetics , 2005 .

[50]  Charles F. Delwiche,et al.  The Closest Living Relatives of Land Plants , 2001, Science.

[51]  Peter Arensburger,et al.  Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. , 2002, Systematic biology.

[52]  Bob Mau,et al.  Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences , 1999 .

[53]  T. Buckley,et al.  An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference. , 2002, Systematic biology.

[54]  Derrick J. Zwickl,et al.  Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. , 2002, Molecular phylogenetics and evolution.

[55]  Joseph Felsenstein,et al.  Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull , 1993 .

[56]  John P. Huelsenbeck,et al.  Phylogeny, Genome Evolution, and Host Specificity of Single-Stranded RNA Bacteriophage (Family Leviviridae) , 2001, Journal of Molecular Evolution.

[57]  M. Steel,et al.  Distributions of Tree Comparison Metrics—Some New Results , 1993 .

[58]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.

[59]  W. Doolittle,et al.  Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. , 2003, Molecular biology and evolution.

[60]  J. Huelsenbeck,et al.  Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. , 2004, Molecular biology and evolution.

[61]  T. Castoe,et al.  Data partitions and complex models in Bayesian analysis: the phylogeny of Gymnophthalmid lizards. , 2004, Systematic biology.

[62]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[63]  Nick Goldman,et al.  Statistical tests of models of DNA substitution , 1993, Journal of Molecular Evolution.

[64]  Michael Goldstein,et al.  Subjective Bayesian Analysis: Principles and Practice , 2006 .

[65]  M. Newton,et al.  Phylogenetic Inference for Binary Data on Dendograms Using Markov Chain Monte Carlo , 1997 .

[66]  T. Buckley,et al.  Model misspecification and probabilistic tests of topology: evidence from empirical data sets. , 2002, Systematic biology.

[67]  Masatoshi Nei,et al.  Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Zharkikh,et al.  Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. , 1995, Molecular phylogenetics and evolution.

[69]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[70]  Jonathan P. Bollback,et al.  Bayesian model adequacy and choice in phylogenetics. , 2002, Molecular biology and evolution.

[71]  Michael E Alfaro,et al.  Comparative performance of Bayesian and AIC-based measures of phylogenetic model uncertainty. , 2006, Systematic biology.

[72]  B. Rannala Identi(cid:142)ability of Parameters in MCMC Bayesian Inference of Phylogeny , 2002 .

[73]  C. P. Randle,et al.  Strange bayes indeed: uniform topological priors imply non-uniform clade priors. , 2005, Molecular phylogenetics and evolution.

[74]  S. Holmes,et al.  Bootstrapping Phylogenetic Trees: Theory and Methods , 2003 .

[75]  B. Efron,et al.  Second thoughts on the bootstrap , 2003 .

[76]  M. Pagel,et al.  Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation , 2002 .

[77]  P. Lewis,et al.  Phylogenetic systematics turns over a new leaf. , 2001, Trends in ecology & evolution.

[78]  A. Miller,et al.  Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). , 2005, Molecular phylogenetics and evolution.

[79]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[80]  T. Britton,et al.  Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. , 2003, Systematic biology.

[81]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[82]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[83]  J. Kim,et al.  Slicing hyperdimensional oranges: the geometry of phylogenetic estimation. , 2000, Molecular phylogenetics and evolution.

[84]  J. Bull,et al.  An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .

[85]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[86]  Mark P. Simmons,et al.  How meaningful are Bayesian support values? , 2004, Molecular biology and evolution.

[87]  Nick Goldman,et al.  MAXIMUM LIKELIHOOD TREES FROM DNA SEQUENCES: A PECULIAR STATISTICAL ESTIMATION PROBLEM , 1995 .

[88]  Daniel J. Crawford,et al.  Bayesian inference of phylogenetics revisited: developments and concerns , 2005 .