A ferrocenyl-substituted 1,2,4-triazole ligand and its Fe(II), Ni(II) and Cu(II) 1D-chain complexes.

As part of a program aimed at making bifunctional iron(II) spin-crossover (SCO) materials, particularly those having redox/electron transfer as the second function, we have made the new ferrocene-triazole ligand ATF ([(4H-1,2,4-triazol-4-yl)amino]methylferrocene), (1), and a series of M(II) complexes of this ligand with emphasis on iron(II). Polynuclear 1D-chain complexes [Fe(ATF)3](Br)2·0.5(H2O) (2), [Fe(ATF)3](ClO4)2·0.5(H2O) (3), [Ni(ATF)3](ClO4)2·0.5(H2O) (4) and an analogous complex formed with a positively charged ATF ligand [Fe(ATF(+))3](ClO4)5 (6) were formed as polycrystalline powders. Crystals of a mixed ATF/NCS-bridged copper(II) polymer [Cu(ATF)2(NCS)](ClO4)·(Et2O)0.5(MeCN) (5) were formed and structurally characterised. Magnetic and Mössbauer spectral measurements on 2, 3 and 6 indicated that SCO has not been achieved though the Mössbauer data show interesting temperature dependence for doublets of the two iron sites for complexes 2 and 3. Solid state cyclic voltammetric data on the iron(II) complexes 3 and 4 showed well defined, reversible ATF-based electrochemistry, similar to those shown by ATF in solution.

[1]  N. Lupu,et al.  Spin state tuning in FeII 1D coordination polymers made of 1,2,4-triazol-4-yl-propanoic and butanoic acids , 2013 .

[2]  E. Coronado,et al.  2D Bimetallic Oxalate-Based Ferromagnets with Inserted [Fe(4-Br-sal2-trien)]+ and [Fe(3-R-sal2-trien)]+ (R = Br, Cl and CH3O) FeIII Spin-Crossover Complexes , 2013 .

[3]  Azzedine Bousseksou,et al.  Spin Crossover at the Nanometre Scale , 2013 .

[4]  S. Teat,et al.  Dinuclear Complexes with a Triple N1,N2-Triazole Bridge That Exhibit Partial Spin Crossover and Weak Antiferromagnetic Interactions , 2013 .

[5]  Hayley S Scott,et al.  Spin Crossover in Polymeric Materials Using Schiff Base Functionalized Triazole Ligands , 2013 .

[6]  Jean-François Létard,et al.  Crystal Structures and Spin Crossover in the Polymeric Material [Fe(Htrz)2(trz)](BF4) Including Coherent-Domain Size Reduction Effects , 2013 .

[7]  L. G. Lavrenova,et al.  Spin Crossover and Thermochromism of Iron(II) Coordination Compounds with 1,2,4‐Triazoles and Tris(pyrazol‐1‐yl)methanes , 2013 .

[8]  R. Horikoshi Discrete metal complexes from N-heterocyclic ferrocenes: Structural diversity by ligand design , 2013 .

[9]  O. Roubeau Triazole-based one-dimensional spin-crossover coordination polymers. , 2012, Chemistry.

[10]  A. Bond,et al.  Voltammetric reduction and re-oxidation of solid coordination polymers of dihydroxybenzoquinone. , 2012, Chemical communications.

[11]  M. Pink,et al.  A mononuclear Fe(III) single molecule magnet with a 3/2↔5/2 spin crossover. , 2012, Journal of the American Chemical Society.

[12]  Marinela M. Dîrtu,et al.  Coordination preference and magnetic properties of FeII assemblies with a bis-azole bearing 1,2,4-triazole and tetrazole , 2012 .

[13]  Y. Garcia,et al.  1D iron(II) spin crossover complexes with 1,2,4-triazol-4-yl-propanoic acid , 2012 .

[14]  A. Kaiba,et al.  The 1-D polymeric structure of the [Fe(NH2trz)3](NO3)2·nH2O (with n = 2) spin crossover compound proven by single crystal investigations. , 2011, Chemical communications.

[15]  P. Molina,et al.  Synthesis, structural charaterization, and electrochemical and optical properties of ferrocene-triazole-pyridine triads. , 2011, Inorganic chemistry.

[16]  Marinela M. Dîrtu,et al.  Insights into the origin of cooperative effects in the spin transition of [Fe(NH2trz)3](NO3)2: the role of supramolecular interactions evidenced in the crystal structure of [Cu(NH2trz)3](NO3)2.H2O. , 2010, Inorganic chemistry.

[17]  Eugenio Coronado,et al.  Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. , 2010, Inorganic chemistry.

[18]  G. Gasser,et al.  Synthesis and complexation properties of novel triazoyl-based ferrocenyl ligands , 2010 .

[19]  A. Nafady Voltammetric behavior of microparticles and thin films of neo-pentyl-ferrocene-based polyester (PmFB): Manipulation of anion uptake at the ionic liquid/aqueous electrolyte interface , 2009 .

[20]  D. Denux,et al.  Nanoparticles of [Fe(NH2-trz)3]Br2.3H2O (NH2-trz=2-amino-1,2,4-triazole) prepared by the reverse micelle technique: influence of particle and coherent domain sizes on spin-crossover properties. , 2009, Chemistry.

[21]  Yangjie Wu,et al.  The Structures and Electrochemistry of Schiff Base Compounds Bearing Ferrocene and Triazole , 2009 .

[22]  C. J. McAdam,et al.  Electrochemical studies with dissolved and surface-confined forms of neo-pentyl-ferrocene-based polyesters utilising [NBu4][B(C6F5)4] and other electrolytes , 2009 .

[23]  Jean-François Létard,et al.  Nanoparticles of iron(II) spin-crossover. , 2008, Chemical communications.

[24]  P. Gütlich,et al.  One-dimensional iron(II) compounds exhibiting spin crossover and liquid crystalline properties in the room temperature region. , 2008, Inorganic chemistry.

[25]  A. Bond,et al.  Controllable Synthesis and Fabrication of Semiconducting Nanorod/Nanowire Bundles of Fe[TCNQ]2(H2O)2 via Electrochemically Induced Solid−Solid Phase Transformation of TCNQ Microcrystals , 2008 .

[26]  R. Valentí,et al.  Microscopic modeling of a spin crossover transition , 2007, 0711.1053.

[27]  A. Bond,et al.  Morphology changes and mechanistic aspects of the electrochemically-induced reversible solid-solid transformation of microcrystalline TCNQ into Co TCNQ 2-based materials (TCNQ= 7, 7, 8, 8-Tetracyanoquinodimethane) , 2006 .

[28]  Sally Brooker,et al.  The coordination chemistry of 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazoles and related ligands , 2003 .

[29]  A. Bond,et al.  Conditions required to achieve the apparent equivalence of adhered solid- and solution-phase voltammetry for ferrocene and other redox-active solids in ionic liquids. , 2003, Analytical chemistry.

[30]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[31]  J. G. Haasnoot,et al.  Spin Transition Regime in New One-Dimensional Polymeric Iron(II) Compounds. Importance of the Water Content for the Thermal and Optical Properties , 2002 .

[32]  I. Nowik,et al.  Atomic and molecular dynamics in organometallics : Anisotropy of iron atom motion in ferrocene , 2002 .

[33]  R. Herber Atomic and Molecular Motion in Iron Organometallics , 2001 .

[34]  I. Nowik,et al.  Mean-Square Amplitudes of Vibration of the Metal Atom in Iron-Organometallics , 2001 .

[35]  J. G. Haasnoot,et al.  Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands , 2000 .

[36]  J. Moscovici,et al.  Synthesis, crystal structure, EXAFS and magnetic properties of Catena [mu-tris(4-(2'-hydroxy-ethyl)-1,2,4-triazole-N1,N2) copper(II)] bis (perchlorate) trihydrate. Relevance with the structure of the Fe(II) 1,2,4-triazole spin transition molecular materials , 1997 .

[37]  R. Martínez‐Máñez,et al.  Ferrocene containing chelating ligands 3. Synthesis, spectroscopic characterization, electrochemical behaviour and interaction with metal ions of new ligands obtained by condensation of ferrocenecarboxaldehyde with 2-amino-benzoic acid derivatives. Crystal structures of 2-ferrocenylmethylamino-5-met , 1995 .

[38]  A. Bond,et al.  Mechanistic aspects of the electron and ion transport processes across the electrode | solid | solvent (electrolyte) interface of microcrystalline decamethylferrocene attached mechanically to a graphite electrode , 1994 .

[39]  B. Kennedy,et al.  Magnetic properties and zero-field splitting in high-spin manganese(III) complexes. 1. Mononuclear and polynuclear Schiff-base chelates , 1985 .

[40]  J. G. Haasnoot,et al.  Synthesis, spectroscopic characterization, and magnetic properties of unusual 3,5-dialkyl-1,2,4-triazole compounds containing N-bridging isothiocyanato ligands. X-ray structure of trinuclear bis[(.mu.-thiocyanato-N)bis(.mu.-3,5-diethyl-1,2,4-triazole-N1,N2)bis(thiocyanato-N)(3,5-diethyl-1,2,4-triazo , 1984 .

[41]  A. Bond,et al.  The role of dissolution in the voltammetry of microdroplets and microparticles adhered to electrode surfaces in contact with aqueous electrolytes or ionic liquids , 2005 .

[42]  Y. Garcia,et al.  A CuII chain compound showing a ferromagnetic coupling through triple N1, N2-1,2, 4-triazole bridges , 2003 .

[43]  Z. Ciunik,et al.  Counter anion dependent symmetry ofCuII–4-amino-1,2,4-triazole polymeric chains , 2001 .

[44]  Y. Garcia,et al.  Non-classical Fe(II) spin crossover behaviour leading to an unprecedented extremely large apparent thermal hysteresis of 270 K : application for displays , 1997 .

[45]  Y. Garcia,et al.  Non-classical FeII spin-crossover behaviour in polymeric iron(II) compounds of formula [Fe(NH2trz)3]X2xH2O (NH2trz=4-amino-1,2,4-triazole; X=derivatives of naphthalene sulfonate) , 1997 .

[46]  R. L. Martin,et al.  Low-temperature magnetic studies of a linear trimeric nickel compound: abcjkl-hexa-aqua-def;ghi-hexakis[µ-1,2,4-triazole-N1N2]-tri-nickel(II) hexanitrate dihydrate , 1978 .

[47]  G. Ortaggi,et al.  The mössbauer investigation of some derivatives of ferrocenes , 1974 .