analysis in amphibians Evolution of climatic niche specialization : a phylogenetic

[1]  Jorge Soberón Grinnellian and Eltonian niches and geographic distributions of species. , 2007, Ecology letters.

[2]  K. Mardia,et al.  A penalized likelihood approach to image warping , 2001 .

[3]  J. Wiens RE‐EVOLUTION OF LOST MANDIBULAR TEETH IN FROGS AFTER MORE THAN 200 MILLION YEARS, AND RE‐EVALUATING DOLLO'S LAW , 2011, Evolution; international journal of organic evolution.

[4]  Ignacio Quintero,et al.  Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. , 2013, Ecology letters.

[5]  A. Peterson Predicting the Geography of Species’ Invasions via Ecological Niche Modeling , 2003, The Quarterly Review of Biology.

[6]  Robert J. Hijmans,et al.  Geographic Data Analysis and Modeling , 2015 .

[7]  A. Pyron,et al.  A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. , 2011, Molecular phylogenetics and evolution.

[8]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[9]  J. Pither,et al.  Climate tolerance and interspecific variation in geographic range size , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  J. Wiens,et al.  How Does Climate Influence Speciation? , 2013, The American Naturalist.

[11]  M. Araújo,et al.  Additive threats from pathogens, climate and land-use change for global amphibian diversity , 2011, Nature.

[12]  D. Futuyma,et al.  The Evolution of Ecological Specialization , 1988 .

[13]  D. Ackerly TAXON SAMPLING, CORRELATED EVOLUTION, AND INDEPENDENT CONTRASTS , 2000, Evolution; international journal of organic evolution.

[14]  J. Wiens,et al.  DOES NICHE CONSERVATISM PROMOTE SPECIATION? A CASE STUDY IN NORTH AMERICAN SALAMANDERS , 2006, Evolution; international journal of organic evolution.

[15]  Juan M. Guayasamin,et al.  Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. , 2013, Ecology letters.

[16]  Antoine Guisan,et al.  Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders , 2012, Science.

[17]  Matthew E. Aiello‐Lammens,et al.  How does climate change cause extinction? , 2013, Proceedings of the Royal Society B: Biological Sciences.

[18]  John-Arvid Grytnes,et al.  Niche conservatism as an emerging principle in ecology and conservation biology. , 2010, Ecology letters.

[19]  C. Graham,et al.  Evolutionary and Ecological Causes of the Latitudinal Diversity Gradient in Hylid Frogs: Treefrog Trees Unearth the Roots of High Tropical Diversity , 2006, The American Naturalist.

[20]  J. Wiens,et al.  DIVERSITY AND NICHE EVOLUTION ALONG ARIDITY GRADIENTS IN NORTH AMERICAN LIZARDS (PHRYNOSOMATIDAE) , 2013, Evolution; international journal of organic evolution.

[21]  Steven R. Beissinger,et al.  Birds track their Grinnellian niche through a century of climate change , 2009, Proceedings of the National Academy of Sciences.

[22]  R. Bryson,et al.  An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. , 2012, Ecology letters.

[23]  J. Wiens,et al.  Accelerated rates of climatic-niche evolution underlie rapid species diversification. , 2010, Ecology letters.

[24]  Robert K. Colwell,et al.  Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment , 2007, The American Naturalist.

[25]  D. Gower,et al.  Global patterns of diversification in the history of modern amphibians , 2007, Proceedings of the National Academy of Sciences.

[26]  P. Bentley Adaptations of amphibia to arid environments. , 1966, Science.

[27]  W. Jetz,et al.  Environmental and historical constraints on global patterns of amphibian richness , 2007, Proceedings of the Royal Society B: Biological Sciences.

[28]  John J. Wiens,et al.  Global Patterns of Diversification and Species Richness in Amphibians , 2007, The American Naturalist.

[29]  Susanne A. Fritz,et al.  Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians , 2011 .

[30]  Paul R. Martin,et al.  Are mountain passes higher in the tropics? Janzen's hypothesis revisited. , 2006, Integrative and comparative biology.

[31]  J. Wiens,et al.  What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades , 2013 .

[32]  A. F. Bennett,et al.  An experimental test of evolutionary trade-offs during temperature adaptation , 2007, Proceedings of the National Academy of Sciences.

[33]  R. Holt The microevolutionary consequences of climate change. , 1990, Trends in ecology & evolution.

[34]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[35]  P. Stephens,et al.  Testing for evolutionary trade‐offs in a phylogenetic context: ecological diversification and evolution of locomotor performance in emydid turtles , 2008, Journal of evolutionary biology.

[36]  Ellen I. Damschen,et al.  Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals , 2010, Proceedings of the Royal Society B: Biological Sciences.

[37]  Nicholas K. Dulvy,et al.  Thermal tolerance and the global redistribution of animals , 2012 .

[38]  R. A. Pyron,et al.  PHYLOGENETIC ANALYSES REVEAL UNEXPECTED PATTERNS IN THE EVOLUTION OF REPRODUCTIVE MODES IN FROGS , 2012, Evolution; international journal of organic evolution.

[39]  J. Wiens,et al.  Niche Conservatism Drives Elevational Diversity Patterns in Appalachian Salamanders , 2010, The American Naturalist.

[40]  D. Janzen Why Mountain Passes are Higher in the Tropics , 1967, The American Naturalist.

[41]  P. Stephens,et al.  Bridging the gap between community ecology and historical biogeography: niche conservatism and community structure in emydid turtles , 2009, Molecular ecology.

[42]  C. Orme,et al.  Understanding global patterns in amphibian geographic range size: does Rapoport rule? , 2012 .

[43]  A. F. Bennett,et al.  Evolutionary Response of Escherichia coli to Thermal Stress , 1993, The American Naturalist.

[44]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[45]  G. Turner The Ecology of Adaptive Radiation , 2001, Heredity.

[46]  R. Bivand,et al.  Tools for Reading and Handling Spatial Objects , 2016 .

[47]  Maria A. Gandolfo,et al.  Phylogenetic biome conservatism on a global scale , 2009, Nature.

[48]  R. A. Pyron,et al.  Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity , 2013, Proceedings of the Royal Society B: Biological Sciences.

[49]  M. Araújo,et al.  Equilibrium of Global Amphibian Species Distributions with Climate , 2012, PloS one.

[50]  D. Roff,et al.  The evolution of trade‐offs: where are we? , 2007, Journal of evolutionary biology.

[51]  J. Wiens,et al.  Climatic zonation drives latitudinal variation in speciation mechanisms , 2007, Proceedings of the Royal Society B: Biological Sciences.

[52]  Craig Moritz,et al.  Latitude, elevational climatic zonation and speciation in New World vertebrates , 2012, Proceedings of the Royal Society B: Biological Sciences.

[53]  C. Navas,et al.  A preliminary assessment of anuran physiological and morphological adaptation to the Caatinga, a Brazilian semi-arid environment , 2004 .

[54]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .