Subspace-based frequency estimation in the presence of moving-average noise using decimation

Abstract The problem of estimating the frequencies of complex sinusoids contaminated by correlated noise, using subspace-based methods and data-decimation, is considered. In order to increase the accuracy of the estimates a method is proposed where all the available decimated sequences are used to calculate the sample covariance matrix. It is demonstrated, by means of numerical examples, that the proposed method provides a substantial improvement over standard subspace techniques in terms of accuracy and resolution capability.

[1]  Jean-Jacques Fuchs,et al.  Estimating the number of sinusoids in additive white noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[2]  K. W. Martin,et al.  Adaptive detection and enhancement of multiple sinusoids using a cascade IIR filter , 1989 .

[3]  T. Söderström,et al.  High-order Yule-Walker equations for estimating sinusoidal frequencies: the complete set of solutions , 1990 .

[4]  Petre Stoica List of references on spectral line analysis , 1993, Signal Process..

[5]  Torsten Söderström,et al.  Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies , 1991, IEEE Trans. Signal Process..

[6]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[7]  Petre Stoica,et al.  Asymptotical analysis of MUSIC and ESPRIT frequency estimates , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[8]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[9]  Bjorn Ottersten,et al.  Performance analysis of the total least squares ESPRIT algorithm , 1991, IEEE Trans. Signal Process..

[10]  T. Kailath,et al.  Efficient estimation of closely spaced sinusoidal frequencies using subspace-based methods , 1997, IEEE Signal Processing Letters.

[11]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[12]  Petre Stoica,et al.  Asymptotic variance of the AR spectral estimator for noisy sinusoidal data , 1994, Signal Process..

[13]  Samuel D. Stearns,et al.  An adaptive IIR structure for sinusoidal enhancement, frequency estimation, and detection , 1986, IEEE Trans. Acoust. Speech Signal Process..

[14]  Randolph L. Moses,et al.  A modified TLS-Prony method using data decimation , 1994, IEEE Trans. Signal Process..

[15]  M. Quirk,et al.  Improving resolution for autoregressive spectral estimation by decimation , 1983 .

[16]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[17]  Chrysostomos L. Nikias,et al.  Parameter estimation of exponentially damped sinusoids using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..

[18]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[19]  Petre Stoica,et al.  On the resolution performance of spectral analysis , 1995, Signal Process..

[20]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .