On the Foundations and the Applications of Evolutionary Computing

Genetic type particle methods are increasingly used to sample from complex high-dimensional distributions. They have found a wide range of applications in applied probability, Bayesian statistics, information theory, and engineering sciences. Understanding rigorously these new Monte Carlo simulation tools leads to fascinating mathematics related to Feynman-Kac path integral theory and their interacting particle interpretations. In this chapter, we provide an introduction to the stochastic modeling and the theoretical analysis of these particle algorithms. We also illustrate these methods through several applications.

[1]  Mariem Ellouze,et al.  Global Sensitivity Analysis Applied to a Contamination Assessment Model of Listeria monocytogenes in Cold Smoked Salmon at Consumption , 2010, Risk analysis : an official publication of the Society for Risk Analysis.

[2]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[3]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[4]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[5]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  P. Moral Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems , 1998 .

[8]  Robert G. Reynolds,et al.  Problem solving using cultural algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[10]  Larry J. Eshelman,et al.  Proceedings of the 6th International Conference on Genetic Algorithms , 1995 .

[11]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[12]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[13]  P. Moral,et al.  On the stability of measure valued processes with applications to filtering , 1999 .

[14]  Pierre Del Moral,et al.  On the Concentration Properties of Interacting Particle Processes , 2011, Found. Trends Mach. Learn..

[15]  Vivien Rossi,et al.  Convolution particle filtering for parameter estimation in general state-space models , 2006, CDC.

[16]  Caffarel,et al.  Diffusion monte carlo methods with a fixed number of walkers , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[18]  Martijn C. Schut,et al.  New Ways to Calibrate Evolutionary Algorithms , 2008, Advances in Metaheuristics for Hard Optimization.

[19]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[20]  Edward P. K. Tsang,et al.  Fast local search and guided local search and their application to British Telecom's workforce scheduling problem , 1997, Oper. Res. Lett..

[21]  Pierre Del Moral,et al.  Limit theorems for the multilevel splitting algorithm in the simulation of rare events , 2005, Proceedings of the Winter Simulation Conference, 2005..

[22]  Thomas Bäck,et al.  An Overview of Evolutionary Computation , 1993, ECML.

[23]  J. H. Hetherington,et al.  Observations on the statistical iteration of matrices , 1984 .

[24]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[25]  P. Grassberger Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .

[26]  Magnus R. Hestenes,et al.  Iterative methods for solving linear equations , 1973 .

[27]  Marc Schoenauer,et al.  Artificial Evolution , 2000, Lecture Notes in Computer Science.

[28]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[29]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[30]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[31]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[32]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[33]  P. Moral,et al.  Rare event simulation for a static distribution , 2009 .

[34]  P. Del Moral,et al.  Traitement non-linéaire du signal par réseau particulaire application radar , 1993 .

[35]  Thomas Bäck,et al.  Empirical Investigation of Multiparent Recombination Operators in Evolution Strategies , 1997, Evolutionary Computation.

[36]  P. Glynn,et al.  Hoeffding's inequality for uniformly ergodic Markov chains , 2002 .

[37]  H. Teicher,et al.  Central Limit Theorems , 1997 .

[38]  E. Baum Towards practical `neural' computation for combinatorial optimization problems , 1987 .

[39]  David P. Anderson,et al.  SETI@home: an experiment in public-resource computing , 2002, CACM.

[40]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[41]  P. Moral,et al.  A non asymptotic variance theorem for unnormalized Feynman-Kac particle models , 2008 .

[42]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[43]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[44]  Heinz Mühlenbein,et al.  Analysis of Selection, Mutation and Recombination in Genetic Algorithms , 1995, Evolution and Biocomputation.

[45]  John S Denker,et al.  AIP Conference Proceedings 151 on Neural Networks for Computing , 1987 .

[46]  Enrique Alba,et al.  Performance of Distributed GAs on DNA Fragment Assembly , 2006, Parallel Evolutionary Computations.

[47]  P. Moral,et al.  On the stability of interacting processes with applications to filtering and genetic algorithms , 2001 .

[48]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[49]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[50]  P. Protter,et al.  The Monte-Carlo method for filtering with discrete-time observations , 2001 .

[51]  P. Moral,et al.  On adaptive resampling strategies for sequential Monte Carlo methods , 2012, 1203.0464.

[52]  P. Moral,et al.  Modeling genetic algorithms with interacting particle systems , 2009 .

[53]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[54]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[55]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[56]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[57]  Günter Rudolph,et al.  Contemporary Evolution Strategies , 1995, ECAL.

[58]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[59]  P. Moral,et al.  A nonasymptotic theorem for unnormalized Feynman-Kac particle models , 2011 .

[60]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[61]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[62]  Laurent Miclo,et al.  A Moran particle system approximation of Feynman-Kac formulae , 2000 .

[63]  Paul Fearnhead,et al.  Computational methods for complex stochastic systems: a review of some alternatives to MCMC , 2008, Stat. Comput..

[64]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[65]  Peter F. Stadler,et al.  Towards a theory of landscapes , 1995 .

[66]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[67]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[68]  Günter Rudolph,et al.  Finite Markov Chain Results in Evolutionary Computation: A Tour d'Horizon , 1998, Fundam. Informaticae.

[69]  Umesh V. Vazirani,et al.  "Go with the winners" algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[70]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[71]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[72]  RudolphGünter Finite Markov chain results in evolutionary computation , 1998 .

[73]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[74]  H. Waelbroeck,et al.  Complex Systems and Binary Networks , 1995 .

[75]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[76]  F. Herrera,et al.  Dynamic and heuristic fuzzy connectives‐based crossover operators for controlling the diversity and convergence of real‐coded genetic algorithms , 1996 .

[77]  M. Ellouze,et al.  Use of global sensitivity analysis in quantitative microbial risk assessment: application to the evaluation of a biological time temperature integrator as a quality and safety indicator for cold smoked salmon. , 2011, Food microbiology.

[78]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[79]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[80]  R. Cerf Asymptotic convergence of genetic algorithms , 1998, Advances in Applied Probability.

[81]  John Lygeros,et al.  Stochastic hybrid systems: Theory and safety critical applications , 2006 .

[82]  Del Moral,et al.  1 - Résolution particulaire et traitement non-linéaire du signal : applications RADAR/SONAR , 1995 .

[83]  N. Chopin A sequential particle filter method for static models , 2002 .

[84]  P. Moral,et al.  On the stability of nonlinear Feynman-Kac semigroups , 2002 .

[85]  Hans Kiinsch,et al.  State Space and Hidden Markov Models , 2000 .

[86]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[87]  Francisco Herrera,et al.  Heuristic Crossovers for Real-Coded Genetic Algorithms Based on Fuzzy Connectives , 1996, PPSN.

[88]  Boleslaw K. Szymanski,et al.  Evolutionary Algorithms on Volunteer Computing Platforms: The MilkyWay@Home Project , 2010, Parallel and Distributed Computational Intelligence.

[89]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[90]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[91]  Kaddour Najim,et al.  APPLICATION OF GENEALOGICAL DECISION TREES FOR OPEN-LOOP TRACKING CONTROL , 2005 .

[92]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[93]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[94]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[95]  Kaddour Najim,et al.  A Genealogical Decision Tree Solution to Optimal Control Problems , 2004 .

[96]  P. Moral,et al.  Genealogies and Increasing Propagation of Chaos For Feynman-Kac and Genetic Models , 2001 .

[97]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[98]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[99]  José Rui Figueira,et al.  A priori landscape analysis in guiding interactive multi-objective metaheuristics , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[100]  P. Moral,et al.  Annealed Feynman-Kac Models , 2003 .

[101]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[102]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[103]  Kenneth de Jong,et al.  Evolutionary computation: a unified approach , 2007, GECCO.

[104]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[105]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[106]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[107]  Lester Ingber,et al.  Adaptive Simulated Annealing (ASA) and Path-Integral (PATHINT) Algorithms: Generic Tools for Complex Systems , 2001 .

[108]  M. Powell On the Convergence of the Variable Metric Algorithm , 1971 .

[109]  P. Moral,et al.  Sequential Monte Carlo samplers for rare events , 2006 .

[110]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[111]  Louis Coroller,et al.  New Prediction Interval and Band in the Nonlinear Regression Model: Application to Predictive Modeling in Foods , 2010, Commun. Stat. Simul. Comput..

[112]  F. Campillo,et al.  Convolution Particle Filter for Parameter Estimation in General State-Space Models , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[113]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[114]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[115]  M. P. Nightingale,et al.  QUANTUM MONTE CARLO METHODS IN STATISTICAL MECHANICS , 1999 .

[116]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[117]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[118]  Jonathan E. Rowe,et al.  An extension of geiringer's theorem for a wide class of evolutionary search algorithms , 2006 .

[119]  J. Augustin,et al.  Identification of complex microbiological dynamic systems by nonlinear filtering , 2009 .

[120]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[121]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[122]  José Rui Figueira,et al.  Computing and Selecting-E ffi cient Solutions of { 0 , 1 }-Knapsack Problems , 2007 .

[123]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[124]  Jean Jacod,et al.  Interacting Particle Filtering With Discrete Observations , 2001, Sequential Monte Carlo Methods in Practice.

[125]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[126]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[127]  P. Moral,et al.  Concentration Inequalities for Mean Field Particle Models , 2011, 1211.1837.

[128]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[129]  F. Bremaud,et al.  Introduction Aux Probabilites , 1984 .

[130]  Matthias S. Müller,et al.  Progress Towards Petascale Applications in Biology: Status in 2006 , 2006, Euro-Par Workshops.

[131]  A. Doucet,et al.  Particle Motions in Absorbing Medium with Hard and Soft Obstacles , 2004 .

[132]  P. Moral,et al.  Branching and interacting particle interpretations of rare event probabilities , 2006 .

[133]  Laurent Miclo,et al.  Asymptotic results for genetic algorithms with applications to nonlinear estimation , 2001 .

[134]  Peter F. Stadler,et al.  Barrier Trees on Poset-Valued Landscapes , 2003, Genetic Programming and Evolvable Machines.

[135]  Francisco Herrera,et al.  A taxonomy for the crossover operator for real‐coded genetic algorithms: An experimental study , 2003, Int. J. Intell. Syst..

[136]  Norbert Meyer,et al.  Euro-Par 2006 Workshops: Parallel Processing , 2007, Lecture Notes in Computer Science.

[137]  J. Azéma,et al.  Seminaire de Probabilites XXXIV , 2000 .

[138]  S. Yau Mathematics and its applications , 2002 .

[139]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[140]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[141]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[142]  Alden H. Wright,et al.  Quotients of Markov chains and asymptotic properties of the stationary distribution of the Markov chain associated to an evolutionary algorithm , 2007, Genetic Programming and Evolvable Machines.

[143]  Franz Rothlauf,et al.  On the importance of the second largest eigenvalue on the convergence rate of genetic algorithms , 2001 .

[144]  Daniel A. Ashlock,et al.  Evolutionary computation for modeling and optimization , 2005 .

[145]  Bruce E. Rosen,et al.  Genetic Algorithms and Very Fast Simulated Reannealing: A comparison , 1992 .

[146]  Pierre Del Moral,et al.  Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups , 2003 .

[147]  Günter Rudolph,et al.  Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[148]  Francisco Fernndez de Vega,et al.  Parallel and Distributed Computational Intelligence , 2010, Parallel and Distributed Computational Intelligence.

[149]  H. Carvalho,et al.  Optimal nonlinear filtering in GPS/INS integration , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[150]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[151]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[152]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[153]  Francisco Herrera,et al.  Fuzzy connectives based crossover operators to model genetic algorithms population diversity , 1997, Fuzzy Sets Syst..

[154]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..