Preclinical Animal Models for Segmental Bone Defect Research and Tissue Engineering

[1]  D. Hutmacher,et al.  Knochen-Tissue-Engineering , 2012, Der Orthopäde.

[2]  Shannon R. Moore,et al.  Surgical Membranes as Directional Delivery Devices to Generate Tissue: Testing in an Ovine Critical Sized Defect Model , 2011, PloS one.

[3]  Jochen Eulert,et al.  Custom-made composite scaffolds for segmental defect repair in long bones , 2011, International Orthopaedics.

[4]  N. Verdonschot,et al.  No effect of dynamic loading on bone graft healing in femoral segmental defect reconstructions in the goat. , 2010, Injury.

[5]  C. Klein,et al.  Unreamed or RIA reamed nailing: an experimental sheep study using comparative histological assessment of affected bone tissue in an acute fracture model. , 2010, Injury.

[6]  Dongmei Li,et al.  Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[7]  D. Donati,et al.  Osteogenic protein-1 associated with mesenchymal stem cells promote bone allograft integration. , 2010, Tissue engineering. Part A.

[8]  Stefan Milz,et al.  Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. , 2010, Biomaterials.

[9]  D. Hutmacher,et al.  Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. , 2010, Tissue engineering. Part B, Reviews.

[10]  N. Rozen,et al.  Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. , 2009, Bone.

[11]  Michael J Fagan,et al.  A Single-Channel Telemetric Intramedullary Nail for In Vivo Measurement of Fracture Healing , 2009, Journal of orthopaedic trauma.

[12]  Lian Zhu,et al.  Enhanced healing of goat femur‐defect using BMP7 gene‐modified BMSCs and load‐bearing tissue‐engineered bone , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[13]  P. Fratzl,et al.  Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. , 2009, Bone.

[14]  H. Varma,et al.  Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma. , 2009, Acta biomaterialia.

[15]  Brett Nemke,et al.  Comparison of a new braid fixation system to an interlocking intramedullary nail for tibial osteotomy repair in an ovine model. , 2009, Veterinary surgery : VS.

[16]  T. White,et al.  The Stress Response to Bilateral Femoral Fractures: A Comparison of Primary Intramedullary Nailing and External Fixation , 2009, Journal of orthopaedic trauma.

[17]  H. Zwipp,et al.  In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[18]  Jackie Y Ying,et al.  Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. , 2008, Biomaterials.

[19]  Georg N Duda,et al.  Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep. , 2008, Bone.

[20]  Lutz Claes,et al.  Increased cortical remodeling after osteotomy causes posttraumatic osteopenia. , 2008, Bone.

[21]  J. Clements,et al.  Treating segmental bone defects: a new technique. , 2008, The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons.

[22]  Yilin Cao,et al.  Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate , 2008, Journal of materials science. Materials in medicine.

[23]  L. Claes,et al.  Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing , 2008, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[24]  K. Zou,et al.  Detection of simulated inflicted metaphyseal fractures in a fetal pig model: image optimization and dose reduction with computed radiography. , 2008, Radiology.

[25]  Peter Hering,et al.  Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results. , 2008, Photomedicine and laser surgery.

[26]  P. O'loughlin,et al.  Selection and development of preclinical models in fracture-healing research. , 2008, The Journal of bone and joint surgery. American volume.

[27]  Mark A. Lee,et al.  Nonunions and the potential of stem cells in fracture-healing. , 2008, The Journal of bone and joint surgery. American volume.

[28]  U. Schneider,et al.  The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: Retrospective analysis of 180 defects , 2008, Laboratory animals.

[29]  Ching-Chuan Jiang,et al.  Repair of porcine articular cartilage defect with a biphasic osteochondral composite , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[30]  D. Togawa,et al.  Bone formation following OP‐1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[31]  Z. Gugala,et al.  New Approaches in the Treatment of Critical‐Size Segmental Defects in Long Bones , 2007 .

[32]  David J Mooney,et al.  Quantitative assessment of scaffold and growth factor‐mediated repair of critically sized bone defects , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[33]  V. Bousson,et al.  Long‐bone critical‐size defects treated with tissue‐engineered grafts: A study on sheep , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[34]  D. Deligianni,et al.  Biomechanical comparison of callus over a locked intramedullary nail in various segmental bone defects in a sheep model. , 2007, Medical science monitor : international medical journal of experimental and clinical research.

[35]  R. G. Richards,et al.  Animal models for implant biomaterial research in bone: a review. , 2007, European cells & materials.

[36]  Erich Schneider,et al.  Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. , 2007, The Journal of bone and joint surgery. American volume.

[37]  M. Markel,et al.  Recombinant human bone morphogenetic protein-2 in absorbable collagen sponge enhances bone healing of tibial osteotomies in dogs. , 2007, Veterinary surgery : VS.

[38]  R. Franke,et al.  Effects of platelet factors on biodegradation and osteogenesis in metaphyseal defects filled with nanoparticular hydroxyapatite—an experimental study in minipigs , 2007, Growth factors.

[39]  N. Haas,et al.  Quantification of growth factors in allogenic bone grafts extracted with three different methods , 2006, Cell and Tissue Banking.

[40]  Takaaki Tanaka,et al.  Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. , 2006, Biomaterials.

[41]  S. Gogolewski,et al.  Mechanical and radiological assessment of the influence of rhTGFβ‐3 on bone regeneration in a segmental defect in the ovine tibia: Pilot study , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[42]  Z. Gugala,et al.  The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical‐size canine segmental femoral diaphyseal defect , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[43]  V. Bousson,et al.  Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. , 2006, Veterinary surgery : VS.

[44]  M. Mastrogiacomo,et al.  Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. , 2006, Tissue engineering.

[45]  Georg N Duda,et al.  Instability prolongs the chondral phase during bone healing in sheep. , 2006, Bone.

[46]  D. Brodke,et al.  Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[47]  Yilin Cao,et al.  Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. , 2006, Tissue engineering.

[48]  L. Claes,et al.  Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. , 2006, Biomaterials.

[49]  J. Wiltfang,et al.  Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. , 2005, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[50]  G N Duda,et al.  The course of bone healing is influenced by the initial shear fixation stability , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[51]  J. Lou,et al.  Repairing of goat Tibial Bone Defects with BMP-2 Gene–Modified Tissue-Engineered Bone , 2005, Calcified Tissue International.

[52]  Hanna Schell,et al.  On the influence of soft tissue coverage in the determination of bone kinematics using skin markers , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[53]  L. Vulcano,et al.  Treatment of segmental tibial defects using acute bone shortening followed by gradual lengthening with circular external fixator. , 2005, Journal of veterinary medicine. A, Physiology, pathology, clinical medicine.

[54]  J. Goldhahn,et al.  Animal models for fracture treatment in osteoporosis , 2005, Osteoporosis International.

[55]  L. Rimondini,et al.  In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer. , 2005, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[56]  L. Claes,et al.  Low-Intensity Ultrasound Enhances Maturation of Callus after Segmental Transport , 2005, Clinical orthopaedics and related research.

[57]  A. Meunier,et al.  A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects. , 2004, American journal of veterinary research.

[58]  Apostolos H Karantanas,et al.  Low-intensity transosseous ultrasound accelerates osteotomy healing in a sheep fracture model. , 2004, The Journal of bone and joint surgery. American volume.

[59]  H. Seeherman,et al.  Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. , 2004, The Journal of bone and joint surgery. American volume.

[60]  M. Mochizuki,et al.  Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. , 2004, Biomaterials.

[61]  Michael A K Liebschner,et al.  Biomechanical considerations of animal models used in tissue engineering of bone. , 2004, Biomaterials.

[62]  M. Pirela-Cruz,et al.  Management of Posttraumatic Segmental Bone Defects , 2004, The Journal of the American Academy of Orthopaedic Surgeons.

[63]  O. Kilian,et al.  Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. , 2003, Biomaterials.

[64]  Lutz Claes,et al.  Shear movement at the fracture site delays healing in a diaphyseal fracture model , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[65]  Jörg A Auer,et al.  Localized insulin-like growth factor I delivery to enhance new bone formation. , 2003, Bone.

[66]  F. Bloemers,et al.  Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. , 2003, Journal of biomedical materials research. Part B, Applied biomaterials.

[67]  A. Malone Bone in Clinical Orthopedics , 2003 .

[68]  Peter Patka,et al.  Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein‐I or autologous bone marrow , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[69]  N. Haas,et al.  Systemic Application of Growth Hormone for Enhancement of Secondary and Intramembranous Fracture Healing , 2002, Hormone Research in Paediatrics.

[70]  L. Claes,et al.  The effect of mechanical stability on local vascularization and tissue differentiation in callus healing , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[71]  Z. Gugala,et al.  Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. , 2002, Injury.

[72]  E. Burger,et al.  Effect of recombinant human osteogenic protein-1 on the healing of a freshly closed diaphyseal fracture. , 2002, Bone.

[73]  William A. Pierce,et al.  The Effect of Hemorrhagic Shock in a Caprine Tibial Fracture Model , 2002, Journal of orthopaedic trauma.

[74]  S. Marlovits,et al.  Influence of Controlled Reaming on Fat Intravasation After Femoral Osteotomy in Sheep , 2002, Clinical orthopaedics and related research.

[75]  P. F. Hill,et al.  The prevention of experimental osteomyelitis in a model of gunshot fracture in the pig , 2001, European Journal of Orthopaedic Surgery & Traumatology.

[76]  N. Haas,et al.  Homologous growth hormone accelerates healing of segmental bone defects. , 2001, Bone.

[77]  R. Giardino,et al.  Sheep model in orthopedic research: a literature review. , 2001, Comparative medicine.

[78]  Ching‐Jen Wang,et al.  Effect of Shock Wave Therapy on Acute Fractures of the Tibia: A Study in a Dog Model , 2001, Clinical orthopaedics and related research.

[79]  J. M. Jenner,et al.  Biomechanical and histological aspects of fracture healing, stimulated with osteogenic protein-1. , 2001, Biomaterials.

[80]  A. Schmeling,et al.  Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[81]  A. van Lingen,et al.  Resorbable calcium phosphate particles as a carrier material for bone marrow in an ovine segmental defect. , 2000, Journal of biomedical materials research.

[82]  A. Meunier,et al.  Tissue-engineered bone regeneration , 2000, Nature Biotechnology.

[83]  F. Linde,et al.  Properties of growing trabecular ovine bone: PART I: MECHANICAL AND PHYSICAL PROPERTIES , 2000 .

[84]  F. Linde,et al.  Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. , 2000, The Journal of bone and joint surgery. British volume.

[85]  C Perka,et al.  Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. , 2000, Biomaterials.

[86]  H. Thermann,et al.  [Healing of autologous cancellous bone transplants and hydroxylapatite ceramics in tibial segment defects. Value of ultrasonic follow up]. , 2000, Der Unfallchirurg.

[87]  B. Wippermann,et al.  Einheilung von autologen Spongiosatransplantaten und Hydroxylapatitkeramiken im Tibiasegmentdefekt Wert der sonographischen Verlaufskontrolle , 2000, Der Unfallchirurg.

[88]  M. Nugent,et al.  Fibroblast growth factor-2. , 2000, The international journal of biochemistry & cell biology.

[89]  T. Einhorn Clinically applied models of bone regeneration in tissue engineering research. , 1999, Clinical orthopaedics and related research.

[90]  A. van Lingen,et al.  New segmental long bone defect model in sheep: Quantitative analysis of healing with dual energy X‐ray absorptiometry , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[91]  C. V. van Blitterswijk,et al.  Critical size defect in the goat's os ilium. A model to evaluate bone grafts and substitutes. , 1999, Clinical orthopaedics and related research.

[92]  G Huang,et al.  Mechanical and histological analysis of bone-pedicle screw interface in vivo: titanium versus stainless steel. , 1999, Chinese medical journal.

[93]  J. Cordey,et al.  Fracture healing of the sheep tibia treated using a unilateral external fixator. Comparison of static and dynamic fixation. , 1999, Injury.

[94]  E. Schemitsch,et al.  Effect of unreamed, limited reamed, and standard reamed intramedullary nailing on cortical bone porosity and new bone formation. , 1999 .

[95]  Ann E. Van Heest,et al.  Bone-graft substitutes , 1999, The Lancet.

[96]  C. Perry,et al.  Bone repair techniques, bone graft, and bone graft substitutes. , 1999, Clinical orthopaedics and related research.

[97]  Z. Gugala,et al.  Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. , 1999, Journal of orthopaedic trauma.

[98]  E H Schemitsch,et al.  Influence of plate design on cortical bone perfusion and fracture healing in canine segmental tibial fractures. , 1999, Journal of orthopaedic trauma.

[99]  S. Stevenson,et al.  Enhancement of fracture healing with autogenous and allogeneic bone grafts. , 1998, Clinical orthopaedics and related research.

[100]  D Kaspar,et al.  Effects of Mechanical Factors on the Fracture Healing Process , 1998, Clinical orthopaedics and related research.

[101]  William A. Pierce,et al.  Effect of Recombinant Human Bone Morphogenetic Protein‐2 on Fracture Healing in a Goat Tibial Fracture Model , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[102]  Lutz Claes,et al.  Local tissue properties in bone healing: Influence of size and stability of the osteotomy gap , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[103]  Hiroshi Fukuda,et al.  Recombinant Human Basic Fibroblast Growth Factor Accelerates Fracture Healing by Enhancing Callus Remodeling in Experimental Dog Tibial Fracture , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[104]  T. Gerhart,et al.  Healing Bone Using Recombinant Human Bone Morphogenetic Protein 2 and Copolymer , 1998, Clinical orthopaedics and related research.

[105]  S. Boonen,et al.  Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. , 1998, Endocrinology.

[106]  J. Dawson,et al.  Evaluation of bovine‐derived bone protein with a natural coral carrier as a bone‐graft substitute in a canine segmental defect model , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[107]  M. Chapman,et al.  Treatment of Acute Fractures with a Collagen-Calcium Phosphate Graft Material. A Randomized Clinical Trial*† , 1997, The Journal of bone and joint surgery. American volume.

[108]  L. Claes,et al.  Quantitative Assessment of Experimental Fracture Repair by Peripheral Computed Tomography , 1997, Calcified Tissue International.

[109]  T Jämsä,et al.  Enhanced healing of segmental tibial defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and type IV collagen. , 1996, Journal of biomedical materials research.

[110]  J. Vacanti,et al.  Femoral shaft reconstruction using tissue-engineered growth of bone. , 1996, International journal of oral and maxillofacial surgery.

[111]  A. Piancastelli,et al.  Mineral evolution of bone. , 1996, Biomaterials.

[112]  M. Swiontkowski,et al.  Soft-Tissue Blood Flow Following Reamed Versus Unreamed Locked Intramedullary Nailing: A Fractured Sheep Tibia Model , 1996, Annals of plastic surgery.

[113]  A. Wallace,et al.  Measurement of Serum Angiogenic Factor in Devascularized Experimental Tibial Fractures , 1995, Journal of orthopaedic trauma.

[114]  P Augat,et al.  Effect of dynamization on gap healing of diaphyseal fractures under external fixation. , 1995, Clinical biomechanics.

[115]  J. Wark,et al.  The potential of sheep for the study of osteopenia: current status and comparison with other animal models. , 1995, Bone.

[116]  R. A. Forster,et al.  Alternatives to Autogenous Bone Graft: Efficacy and Indications , 1995, The Journal of the American Academy of Orthopaedic Surgeons.

[117]  M. Swiontkowski,et al.  Cortical Bone Blood Flow in Reamed and Unreamed Locked Intramedullary Nailing: A Fractured Tibia Model in Sheep , 1994, Journal of orthopaedic trauma.

[118]  S. Boden,et al.  Spine update. The use of animal models to study spinal fusion. , 1994, Spine.

[119]  G. Cierny,et al.  Segmental tibial defects. Comparing conventional and Ilizarov methodologies. , 1994, Clinical orthopaedics and related research.

[120]  J Kenwright,et al.  The role of fixator frame stiffness in the control of fracture healing. An experimental study. , 1993, Journal of biomechanics.

[121]  R. Bloebaum,et al.  Comparison of human and canine external femoral morphologies in the context of total hip replacement. , 1993, Journal of biomedical materials research.

[122]  E. Wang,et al.  Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. , 1993, Clinical orthopaedics and related research.

[123]  L. Mosekilde,et al.  Calcium-restricted ovariectomized Sinclair S-1 minipigs: an animal model of osteopenia and trabecular plate perforation. , 1992, Bone.

[124]  T. Bauer,et al.  Biological response to chopped-carbon-fiber-reinforced peek. , 1992, Journal of biomedical materials research.

[125]  D Buser,et al.  Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. , 1991, Journal of biomedical materials research.

[126]  E Y Chao,et al.  A study of fracture callus material properties: Relationship to the torsional strength of bone , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[127]  J F Connolly,et al.  Quantitative roentgenographic densitometry for assessing fracture healing. , 1990, Clinical orthopaedics and related research.

[128]  L. Claes,et al.  [The significance of postoperative stability for osseous repair of a multiple fragment fracture. Animal experiment studies]. , 1990, Der Unfallchirurg.

[129]  L. Dahners,et al.  The effect of external fixation stiffness on early healing of transverse osteotomies , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[130]  R. Holmes,et al.  Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. , 1989, Clinical orthopaedics and related research.

[131]  G A Ilizarov,et al.  The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. , 1989, Clinical orthopaedics and related research.

[132]  E. Scull,et al.  A device for producing experimental fractures. , 1988, Acta orthopaedica Scandinavica.

[133]  R. McLaren,et al.  Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs. , 1987, Clinical orthopaedics and related research.

[134]  J. Dumbleton,et al.  The use of short carbon fibre reinforced thermoplastic plates for fracture fixation. , 1985, Biomaterials.

[135]  A. Burstein,et al.  The healing of segmental bone defects induced by demineralized bone matrix. A radiographic and biomechanical study. , 1984, The Journal of bone and joint surgery. American volume.

[136]  L. Schweiberer,et al.  Bone regeneration in animals and in man , 1981, Archives of orthopaedic and traumatic surgery.

[137]  G. I. Taylor,et al.  THE FREE VASCULARIZED BONE GRAFT: A Clinical Extension of Microvascular Techniques , 1975, Plastic and reconstructive surgery.

[138]  Ilizarov Ga,et al.  Bloodless treatment of congenital pseudarthrosis of the crus with simultaneous elimination of shortening using dosed distraction , 1971 .

[139]  J. K. Gong,et al.  The density of organic and volatile and non‐volatile inorganic components of bone , 1964, The Anatomical record.

[140]  S. Gronthos,et al.  The efficacy of allogeneic mesenchymal precursor cells for the repair of an ovine tibial segmental defect , 2011, Veterinary and Comparative Orthopaedics and Traumatology.

[141]  Shunqing Tang,et al.  Repair of bone defect in caprine tibia using a laminated scaffold with bone marrow stromal cells loaded poly (L-lactic acid)/β-tricalcium phosphate. , 2011, Artificial organs.

[142]  P. Kasten,et al.  Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. , 2010, Tissue engineering. Part A.

[143]  A. Kurmis,et al.  The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect , 2009, Veterinary and Comparative Orthopaedics and Traumatology.

[144]  J. Granjeiro,et al.  Tibial segmental bone defect treated with bone plate and cage filled with either xenogeneic composite or autologous cortical bone graft , 2007, Veterinary and Comparative Orthopaedics and Traumatology.

[145]  D. Muscolo,et al.  Massive allograft use in orthopedic oncology. , 2006, The Orthopedic clinics of North America.

[146]  William R Taylor,et al.  Tibio-femoral joint contact forces in sheep. , 2006, Journal of biomechanics.

[147]  H. Fukuda,et al.  Changes of biomechanical characteristics of the bone in experimental tibial osteotomy model in the dog. , 2003, The Journal of veterinary medical science.

[148]  Y. Koyama,et al.  Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. , 2002, Journal of biomedical materials research.

[149]  F. Linde,et al.  PART I: MECHANICAL AND PHYSICAL PROPERTIES , 2000 .

[150]  K. Wenger,et al.  The influence of stiffness of the fixator on maturation of callus after segmental transport. , 2000, The Journal of bone and joint surgery. British volume.

[151]  P. Törmälä,et al.  Fixation of femoral shaft osteotomy with an intramedullary composite rod: an experimental study on dogs with a two-year follow-up. , 1999, Journal of biomaterials science. Polymer edition.

[152]  M. van der Elst,et al.  Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. , 1999, Biomaterials.

[153]  J D Mabrey,et al.  An interspecies comparison of bone fracture properties. , 1998, Bio-medical materials and engineering.

[154]  J. Buckwalter,et al.  Use of animal models in musculoskeletal research. , 1998, The Iowa orthopaedic journal.

[155]  M. Urist,et al.  The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep , 1997, International Orthopaedics.

[156]  S. Perren,et al.  Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. , 1997, Journal of orthopaedic trauma.

[157]  C. Barrios,et al.  Large experimental segmental bone defects treated by bone transportation with monolateral external distractors. , 1994, Clinical orthopaedics and related research.

[158]  P. Törmälä,et al.  The effect of an intramedullary self-reinforced poly-L-lactide (SR-PLLA) implant on growing bone with special reference to fixation properties. An experimental study on growing rabbits. , 1992, Journal of biomaterials science. Polymer edition.

[159]  M. Chapman,et al.  Morbidity at bone graft donor sites. , 1989, Journal of orthopaedic trauma.

[160]  H. Burchardt,et al.  A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. , 1985, The Journal of bone and joint surgery. American volume.

[161]  D. Mears,et al.  The results of 39 fractures complicated by major segmental bone loss and/or leg length discrepancy. , 1984, The Journal of trauma.