A Monte Carlo simulation study of Nitrogen on LiF(0 0 1)

[1]  G. Patey,et al.  Monte Carlo simulations of the adsorption of CO2 on the MgO(100) surface. , 2006, The Journal of chemical physics.

[2]  D. Jack,et al.  Simulation of an order-disorder transition in monolayer N 2 /NaCl(001) , 2000 .

[3]  D. Jack,et al.  Structures and stability of CO layers on the MgO(001) surface , 2000 .

[4]  M. Alfredsson,et al.  N2 and HF vibrations on LiF(001) : the effect of surface coverage , 1998 .

[5]  B. A. Hess,et al.  TDMP2 calculation of dynamic multipole polarizabilities and dispersion coefficients of the triplebonded molecules CO, N2, CN−, and NO+ , 1996 .

[6]  A. Meredith,et al.  Structure of CO monolayer adsorbed on NaCl(100) from molecular dynamics , 1996 .

[7]  P. Wormer,et al.  Intramolecular bond length dependence of the anisotropic dispersion coefficients for interactions of rare gas atoms with N2, CO, Cl2, HCl and HBr , 1993 .

[8]  M. Folman,et al.  Induced IR spectra of nitrogen and oxygen adsorbed on evaporated films of ionic crystals , 1993 .

[9]  J. Polanyi,et al.  Dynamics of surface‐aligned photochemistry (theory). II. Localized H‐atom scattering in the HBr(ad)/LiF(001)+hν system , 1992 .

[10]  Ashok Kumar,et al.  Constrained anisotropic dipole oscillator strength distribution techniques, and reliable results for anisotropic and isotropic dipole molecular properties, with applications to H2 and N2 , 1992 .

[11]  J. Heidberg,et al.  Correlation field, structure, and phase transition in the monolayer CO adsorbed on NaCl(100) as revealed from polarization Fourier‐transform infrared spectroscopy , 1991 .

[12]  H. Weiss,et al.  Monolayer structures of carbon monoxide adsorbed on sodium chloride: A helium atom diffraction study , 1991 .

[13]  G. Ewing A model system for the study of structure and dynamics of molecules on surfaces: CO on NaCl(100) , 1991 .

[14]  R. J. Williams,et al.  Structure of adsorbates on alkali halides (theory). I. HBr on LiF(001) , 1991 .

[15]  Ashok Kumar,et al.  Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases , 1990 .

[16]  R. E. Raab,et al.  Measurement of the electric quadrupole moments of CO 2 , CO and N 2 , 1989 .

[17]  K. Tang,et al.  New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems , 1986 .

[18]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[19]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[20]  Jorge V. José,et al.  Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model , 1977 .

[21]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[22]  A. Beerbower,et al.  In: Films on Solid Surfaces , 1976 .

[23]  O. C. Simpson,et al.  Relation between charge and force parameters of closed‐shell atoms and ions , 1975 .

[24]  F. Smith Atomic Distortion and the Combining Rule for Repulsive Potentials , 1972 .

[25]  T. Gilbert,et al.  Soft‐Sphere Model for Closed‐Shell Atoms and Ions , 1968 .