Random fixed point theorems and approximation

In this paper, we first prove some random fixed point theorems for random nonexpansive operators in Banach spaces. As applications, some random approximation theorems for random 1-set-contraction or random continuous condensing mappings defined on closed balls of a separable Banach space, or on separable closed convex subsets of a Hilbert space or on spheres of infinite dimensional separable Banach spaces are established. Our results are generalizations, improvements or stochastic versions of the corresponding results of Bharucha-Reid (1976), Lin (1988, 1989), Lin and Yen (1988), Massatt (1983), Sehgal and Waters (1984) and Xu (1990).

[1]  F. Browder On a sharpened form of the Schauder fixed-point theorem. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Tan,et al.  Random Fixed-Point Theorems and Approximation in Cones , 1994 .

[3]  W. Cheney,et al.  Proximity maps for convex sets , 1959 .

[4]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[5]  R. Nussbaum The fixed point index for local condensing maps , 1971 .

[6]  Tzu-Chu Lin,et al.  Random approximations and random fixed point theorems for non-self-maps , 1988 .

[7]  Nikolaos S. Papageorgiou Random fixed point theorems for measurable multifunctions in Banach spaces , 1986 .

[8]  J. Caristi,et al.  Fixed point theorems for mapping satisfying inwardness conditions , 1976 .

[9]  S. Reich On fixed point theorems obtained from existence theorems for differential equations , 1976 .

[10]  Tzu-Chu Lin Approximations and fixed points for condensing non-self-maps defined on a sphere , 1989 .

[11]  Tzu-Chu Lin,et al.  Applications of the proximity map to fixed point theorems in Hilbert space , 1988 .

[12]  K. Tan Fixed Point Theory and Applications: Proceedings of the Second International Conference , 1992 .

[13]  Simeon Reich,et al.  Approximate selections, best approximations, fixed points, and invariant sets , 1978 .

[14]  P. Massatt A fixed point theorem for α-condensing maps on a sphere , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  Felix E. Browder,et al.  Semicontractive and semiaccretive nonlinear mappings in Banach spaces , 1968 .

[16]  A. T. Bharucha-Reid,et al.  Fixed point theorems in probabilistic analysis , 1976 .

[17]  Fixed point theorems for various classes of 1-set-contractive and 1-ball-contractive mappings in Banach spaces , 1973 .

[18]  Shigeru Itoh,et al.  Random fixed point theorems with an application to random differential equations in Banach spaces , 1979 .

[19]  Ky Fan,et al.  Extensions of two fixed point theorems of F. E. Browder , 1969 .

[20]  福田 弘之 A fixed point theorem in Hilbert space , 1982 .

[21]  Fixed point theorems for set-valued maps in infinite dimensional spaces , 1970 .

[22]  V. Sehgal,et al.  SOME RANDOM FIXED POINT THEOREMS FOR CONDENSING OPERATORS , 1984 .

[23]  Chung-Wei Ha,et al.  Extensions of two fixed point theorems of Ky Fan , 1985 .

[24]  George M. Bergman,et al.  A FIXED-POINT THEOREM FOR INWARD AND OUTWARD MAPS , 1968 .

[25]  B. Watson,et al.  Proximity maps and fixed points , 1983 .

[26]  Ky Fan,et al.  Some properties of convex sets related to fixed point theorems , 1984 .

[27]  L. Rybiński Random fixed points and viable random solutions of functional-differential inclusions , 1989 .

[28]  V. Sehgal,et al.  On random approximations and a random fixed point theorem for set valued mappings , 1985 .

[29]  Hong-Kun Xu,et al.  Some random fixed point theorems for condensing and nonexpansive operators , 1990 .

[30]  C. Kuratowski,et al.  Sur les espaces complets , 1930 .