Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.

[1]  L. Niklason,et al.  Extracellular matrix in lung development, homeostasis and disease. , 2018, Matrix biology : journal of the International Society for Matrix Biology.

[2]  Jochen Guck,et al.  A comparison of methods to assess cell mechanical properties , 2018, Nature Methods.

[3]  Sangmyung Rhee,et al.  Spindle pole body component 25 homolog expressed by ECM stiffening is required for lung cancer cell proliferation. , 2018, Biochemical and biophysical research communications.

[4]  Shelly R. Peyton,et al.  Cross-platform mechanical characterization of lung tissue , 2018, bioRxiv.

[5]  M. Kondo,et al.  Regulation of PD-L1 expression by matrix stiffness in lung cancer cells. , 2018, Biochemical and biophysical research communications.

[6]  D. Navajas,et al.  Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores , 2017, Cell.

[7]  D. Tschumperlin,et al.  Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions. , 2017, Journal of the mechanical behavior of biomedical materials.

[8]  Lucas R. Smith,et al.  Matrix Mechanosensing: From Scaling Concepts in 'Omics Data to Mechanisms in the Nucleus, Regeneration, and Cancer. , 2017, Annual review of biophysics.

[9]  D. Navajas,et al.  Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy , 2017, Journal of cellular physiology.

[10]  José Manuel García-Aznar,et al.  Collective cell durotaxis emerges from long-range intercellular force transmission , 2016, Science.

[11]  D. Navajas,et al.  A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea , 2016, Front. Physiol..

[12]  Christopher M Waters,et al.  Live Cell Imaging during Mechanical Stretch. , 2015, Journal of visualized experiments : JoVE.

[13]  I Jurisica,et al.  Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer , 2015, Oncogene.

[14]  J. Alcaraz,et al.  Matrix Stiffening and β1 Integrin Drive Subtype-Specific Fibroblast Accumulation in Lung Cancer , 2014, Molecular Cancer Research.

[15]  D. Navajas,et al.  Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs. , 2014, Journal of the mechanical behavior of biomedical materials.

[16]  D. Navajas,et al.  Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate , 2014, Respiratory Physiology & Neurobiology.

[17]  C. E. Perlman,et al.  In situ determination of alveolar septal strain, stress and effective Young's modulus: an experimental/computational approach. , 2014, American journal of physiology. Lung cellular and molecular physiology.

[18]  Ramon Farré,et al.  Effects of the decellularization method on the local stiffness of acellular lungs. , 2014, Tissue engineering. Part C, Methods.

[19]  C. Schneider,et al.  Erratum: Quantitative 3D micro-CT imaging of human lung tissue (RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren (2013) DOI: 10.1055/s-0033-1350105)) , 2013 .

[20]  D. Navajas,et al.  Effects of freezing/thawing on the mechanical properties of decellularized lungs. , 2013, Journal of biomedical materials research. Part A.

[21]  E. Ritman,et al.  Quantitative 3D Micro-CT Imaging of Human Lung Tissue , 2013, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[22]  D. Navajas,et al.  Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. , 2013, Acta biomaterialia.

[23]  Arianna Menciassi,et al.  Bio/non-bio interfaces: a straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. , 2013, Colloids and surfaces. B, Biointerfaces.

[24]  Denis Wirtz,et al.  Focal adhesion size uniquely predicts cell migration , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  Richard S. Chadwick,et al.  Determination of the elastic moduli of thin samples and adherent cells using conical AFM tips , 2012, Nature nanotechnology.

[26]  M. Sheetz,et al.  The role of feature curvature in contact guidance. , 2012, Acta biomaterialia.

[27]  Christopher M Waters,et al.  What do we know about mechanical strain in lung alveoli? , 2011, American journal of physiology. Lung cellular and molecular physiology.

[28]  Dimitrije Stamenović,et al.  Lung parenchymal mechanics. , 2011, Comprehensive Physiology.

[29]  W A Wall,et al.  Material model of lung parenchyma based on living precision-cut lung slice testing. , 2011, Journal of the mechanical behavior of biomedical materials.

[30]  A. Majumdar,et al.  Mechanical forces regulate elastase activity and binding site availability in lung elastin. , 2010, Biophysical journal.

[31]  Daniel Gioeli,et al.  Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype , 2010, PloS one.

[32]  A. Kho,et al.  Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression , 2010, The Journal of cell biology.

[33]  Paul A. Janmey,et al.  Cell-Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening , 2009, Current Biology.

[34]  J. Bates,et al.  Extracellular matrix mechanics in lung parenchymal diseases , 2008, Respiratory Physiology & Neurobiology.

[35]  Adam J Engler,et al.  Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating , 2008, Journal of Cell Science.

[36]  C. E. Perlman,et al.  Alveolar expansion imaged by optical sectioning microscopy. , 2007, Journal of applied physiology.

[37]  Linhong Deng,et al.  Universal physical responses to stretch in the living cell , 2007, Nature.

[38]  N. Gavara,et al.  Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy. , 2006, Journal of applied physiology.

[39]  A. Majumdar,et al.  Early emphysema in the tight skin and pallid mice: roles of microfibril-associated glycoproteins, collagen, and mechanical forces. , 2006, American journal of respiratory cell and molecular biology.

[40]  N. Gavara,et al.  Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  D. Stamenović,et al.  Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. , 2005, Journal of applied physiology.

[42]  Arnab Majumdar,et al.  Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. , 2005, Journal of applied physiology.

[43]  D. Navajas,et al.  Viscoelasticity of human alveolar epithelial cells subjected to stretch. , 2004, American journal of physiology. Lung cellular and molecular physiology.

[44]  Ben Fabry,et al.  Microrheology of human lung epithelial cells measured by atomic force microscopy. , 2003, Biophysical journal.

[45]  B Suki,et al.  Roles of mechanical forces and collagen failure in the development of elastase-induced emphysema. , 2001, American journal of respiratory and critical care medicine.

[46]  N. Venkatesan,et al.  Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. , 2000, American journal of respiratory and critical care medicine.

[47]  B Suki,et al.  Effects of collagenase and elastase on the mechanical properties of lung tissue strips. , 2000, Journal of applied physiology.

[48]  S. Margulies,et al.  Alveolar epithelial surface area-volume relationship in isolated rat lungs. , 1999, Journal of applied physiology.

[49]  B. Suki,et al.  Dynamic properties of lung parenchyma: mechanical contributions of fiber network and interstitial cells. , 1997, Journal of applied physiology.

[50]  D. Navajas,et al.  Dynamic viscoelastic nonlinearity of lung parenchymal tissue. , 1995, Journal of applied physiology.

[51]  D Stamenović,et al.  Micromechanical foundations of pulmonary elasticity. , 1990, Physiological reviews.

[52]  J. Crapo,et al.  Spatial distribution of collagen and elastin fibers in the lungs. , 1990, Journal of applied physiology.

[53]  J B West,et al.  Elasticity of excised dog lung parenchyma. , 1978, Journal of applied physiology: respiratory, environmental and exercise physiology.

[54]  C. J. Martin,et al.  Length-tension properties of alveolar wall in man. , 1971, Journal of applied physiology.

[55]  D. Navajas,et al.  In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization. , 2015, American journal of translational research.

[56]  Donald O Freytes,et al.  Reprint of: Extracellular matrix as a biological scaffold material: Structure and function. , 2015, Acta biomaterialia.

[57]  D. Navajas,et al.  Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. , 2012, Comprehensive Physiology.

[58]  S. Badylak,et al.  Extracellular matrix as a biological scaffold material: Structure and function. , 2009, Acta biomaterialia.

[59]  Manfred Radmacher,et al.  Measuring the elastic properties of living cells by the atomic force microscope. , 2002, Methods in cell biology.