Essential genes on metabolic maps.

Within the past five years genome-scale gene essentiality data sets have been published for ten diverse bacterial species. These data are a rich source of information about cellular networks that we are only beginning to explore. The analysis of these data, very heterogeneous in nature, is a challenging task. Even the definition of 'essential genes' in various genome-scale studies varies from genes 'absolutely required for survival' to those 'strongly contributing to fitness' and robust competitive growth. A comparative analysis of gene essentiality across multiple organisms based on projection of experimentally observed essential genes to functional roles in a collection of metabolic pathways and subsystems is emerging as a powerful tool of systems biology.

[1]  Martin Rosenberg,et al.  Identification of Critical Staphylococcal Genes Using Conditional Phenotypes Generated by Antisense RNA , 2001, Science.

[2]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[3]  Martijn A. Huynen,et al.  Constructing a minimal genome , 2000 .

[4]  E. Koonin,et al.  Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. , 2002, Genome research.

[5]  J. Hamer,et al.  Recent advances in large-scale transposon mutagenesis. , 2001, Current opinion in chemical biology.

[6]  Antoine Danchin,et al.  How essential are nonessential genes? , 2005, Molecular biology and evolution.

[7]  Mark D'Souza,et al.  From Genetic Footprinting to Antimicrobial Drug Targets: Examples in Cofactor Biosynthetic Pathways , 2002, Journal of bacteriology.

[8]  Howard Xu,et al.  A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus , 2002, Molecular microbiology.

[9]  Bernhard O. Palsson,et al.  Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions , 2000, BMC Bioinformatics.

[10]  Gábor Balázsi,et al.  Genome-scale identification of conditionally essential genes in E. coli by DNA microarrays. , 2004, Biochemical and biophysical research communications.

[11]  J. Mekalanos,et al.  Transposon-based approaches to identify essential bacterial genes. , 2000, Trends in microbiology.

[12]  J. Mekalanos,et al.  A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Rafael A Irizarry,et al.  Global synthetic-lethality analysis and yeast functional profiling. , 2006, Trends in genetics : TIG.

[14]  E V Koonin,et al.  How many genes can make a cell: the minimal-gene-set concept. , 2000, Annual review of genomics and human genetics.

[15]  T. Fuchs,et al.  Large‐scale identification of essential Salmonella genes by trapping lethal insertions , 2004, Molecular microbiology.

[16]  M. Gelfand,et al.  Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. , 2002, Nucleic acids research.

[17]  M. Mann,et al.  Robust Salmonella metabolism limits possibilities for new antimicrobials , 2006, Nature.

[18]  Finbarr Hayes,et al.  Transposon-based strategies for microbial functional genomics and proteomics. , 2003, Annual review of genetics.

[19]  D Botstein,et al.  Functional Analysis of the Genes of Yeast Chromosome V by Genetic Footprinting , 1996, Science.

[20]  J. Boeke,et al.  DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray , 2003, Nature Genetics.

[21]  S. Oliver,et al.  Chance and necessity in the evolution of minimal metabolic networks , 2006, Nature.

[22]  Jeremy D. Glasner,et al.  Systematic Mutagenesis of the Escherichia coli Genome , 2004, Journal of bacteriology.

[23]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[24]  Ross A. Overbeek,et al.  Automatic detection of subsystem/pathway variants in genome analysis , 2005, ISMB.

[25]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[26]  Stanley Falkow,et al.  Global Transposon Mutagenesis and Essential Gene Analysis of Helicobacter pylori , 2004, Journal of bacteriology.

[27]  B. Palsson,et al.  Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation , 2005, BMC Microbiology.

[28]  B. Dougherty,et al.  Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. , 2002, Nucleic acids research.

[29]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[30]  W. Reznikoff,et al.  Phenotypic Screening of Escherichia coli K-12 Tn5 Insertion Libraries, Using Whole-Genome Oligonucleotide Microarrays , 2005, Applied and Environmental Microbiology.

[31]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Bader,et al.  A robust toolkit for functional profiling of the yeast genome. , 2004, Molecular cell.

[33]  P. Bork,et al.  Genome evolution reveals biochemical networks and functional modules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  B Wieland,et al.  Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. , 2001, Journal of molecular microbiology and biotechnology.

[35]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[36]  B. Palsson,et al.  Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. , 2003, Omics : a journal of integrative biology.

[37]  James R. Brown,et al.  A Global Approach to Identify Novel Broad-Spectrum Antibacterial Targets among Proteins of Unknown Function , 2004, Journal of Molecular Microbiology and Biotechnology.

[38]  A. Moya,et al.  Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.

[39]  E. Rubin,et al.  Comprehensive identification of conditionally essential genes in mycobacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[41]  L. L. Ling,et al.  Microbial pathogen genomes – new strategies for identifying therapeutic and vaccine targets , 2003, Expert opinion on therapeutic targets.

[42]  J. Shendure,et al.  Selection analyses of insertional mutants using subgenic-resolution arrays , 2001, Nature Biotechnology.

[43]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[44]  Eugene V. Koonin,et al.  Comparative genomics, minimal gene-sets and the last universal common ancestor , 2003, Nature Reviews Microbiology.

[45]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[46]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[47]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Manuel Peitsch,et al.  A genome-based approach for the identification of essential bacterial genes , 1998, Nature Biotechnology.

[49]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Jae-Hoon Song,et al.  Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. , 2005, Molecules and cells.

[51]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[52]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.