A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity

Abstract In this paper we prove rigorous results on persistence of invariant tori and their whiskers. The proofs are based on the parameterization method of [X. Cabre, E. Fontich, R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J. 52 (2) (2003) 283–328; X. Cabre, E. Fontich, R. de la Llave, The parameterization method for invariant manifolds. II. Regularity with respect to parameters, Indiana Univ. Math. J. 52 (2) (2003) 329–360]. The invariant manifolds results proved here include as particular cases of the usual (strong) stable and (strong) unstable manifolds, but also include other non-resonant manifolds. The method lends itself to numerical implementations whose analysis and implementation is studied in [A. Haro, R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, preprint, 2005; A. Haro, R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical implementation and examples, preprint, 2005]. The results are stated as a posteriori results. Namely, that if one has an approximate solution which is not degenerate, then, one has a true solution not too far from the approximate one. This can be used to validate the results of numerical computations.

[1]  Carles Simó,et al.  Hamiltonian systems with three or more degrees of freedom , 1999 .

[2]  INVARIANT MANIFOLDS ASSOCIATED TO INVARIANT SUBSPACES WITHOUT INVARIANT COMPLEMENTS : A GRAPH TRANSFORM APPROACH , 2008 .

[3]  Yuri Latushkin,et al.  Evolution Semigroups in Dynamical Systems and Differential Equations , 1999 .

[4]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[5]  R. Llave,et al.  The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .

[6]  Michael Shub,et al.  The local theory of normally hyperbolic, invariant, compact manifolds , 1977 .

[7]  R. Llave,et al.  Regularity of the composition operator in spaces of Hölder functions , 1998 .

[8]  R. Mañé Persistent manifolds are normally hyperbolic , 1978 .

[9]  J. Mather,et al.  Characterization of Anosov Diffeomorphisms , 1968 .

[10]  H. Rüssmann On a new proof of Moser's twist mapping theorem , 1976 .

[11]  A. Celletti,et al.  On the Stability of Realistic Three-Body Problems , 1997 .

[12]  Rafael de la Llave,et al.  A Tutorial on Kam Theory , 2003 .

[13]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[14]  G. Sell,et al.  Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems , 1981 .

[15]  Àngel Jorba,et al.  On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .

[16]  M. Hirsch,et al.  Stable manifolds for hyperbolic sets , 1969 .

[17]  Tosio Kato Perturbation theory for linear operators , 1966 .

[18]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[19]  K. Meyer The implicit function theorem and analytic differential equations , 1975 .

[20]  Edward Nelson Topics in dynamics I: Flows , 1970 .

[21]  R. Llave,et al.  Lindstedt series for lower dimensional tori , 1999 .

[22]  Wolf-Jürgen Beyn,et al.  Numerical Taylor expansions of invariant manifolds in large dynamical systems , 1998, Numerische Mathematik.

[23]  H. Osinga,et al.  Boundary crisis in quasiperiodically forced systems , 2000 .

[24]  K. Meyer,et al.  MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS , 1989 .

[25]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[26]  R. Llave Invariant manifolds associated to nonresonant spectral subspaces , 1997 .

[27]  Russell Johnson Analyticity of spectral subbundles , 1980 .

[28]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[29]  Rafael de la Llave,et al.  On Irwin’s proof of the pseudostable manifold theorem , 1995 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[32]  M. Elbialy Sub-stable and weak-stable manifolds associated with finitely non-resonant spectral subspaces , 2001 .