Evaluating tropical forest classification and field sampling stratification from lidar to reduce effort and enable landscape monitoring

[1]  R. Macarthur,et al.  Foliage Profile by Vertical Measurements , 1969 .

[2]  D. Clark,et al.  Abundance, growth and mortality of very large trees in neotropical lowland rain forest , 1996 .

[3]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[4]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[5]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[6]  P. Baker,et al.  A quantitative technique for the identification of canopy stratification in tropical and temperate forests , 2000 .

[7]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[8]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[9]  M. Keller,et al.  Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations1 , 2002 .

[10]  Dengsheng Lu,et al.  Classification of successional forest stages in the Brazilian Amazon basin , 2003 .

[11]  Dengsheng Lu,et al.  Integration of vegetation inventory data and Landsat TM image for vegetation classification in the western Brazilian Amazon , 2005 .

[12]  Annika Kangas,et al.  Forest inventory: methodology and applications. , 2006 .

[13]  Daniel E. Moerman,et al.  The botanist effect: counties with maximal species richness tend to be home to universities and botanists , 2006 .

[14]  A. Mäkelä,et al.  Crown ratio influences allometric scaling in trees. , 2006, Ecology.

[15]  M. Heurich,et al.  Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests , 2008 .

[16]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[17]  Terje Gobakken,et al.  Improved estimates of forest vegetation structure and biomass with a LiDAR‐optimized sampling design , 2009 .

[18]  G. Dahle,et al.  Review of Literature on the Function and Allometric Relationships of Tree Stems and Branches , 2009, Arboriculture & Urban Forestry.

[19]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[20]  Terje Gobakken,et al.  Different plot selection strategies for field training data in ALS-assisted forest , 2010 .

[21]  M. Vastaranta,et al.  Predicting individual tree attributes from airborne laser point clouds based on the random forests technique , 2011 .

[22]  Arko Lucieer,et al.  Extracting LiDAR indices to characterise multilayered forest structure using mixture distribution functions , 2011 .

[23]  G. Asner,et al.  Evaluating uncertainty in mapping forest carbon with airborne LiDAR , 2011 .

[24]  G. Asner,et al.  A universal airborne LiDAR approach for tropical forest carbon mapping , 2011, Oecologia.

[25]  Yosio Edemir Shimabukuro,et al.  Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. , 2012, Ecology letters.

[26]  H. Tonini,et al.  Fitossociologia de uma Floresta Ombrófila Densa na Amazonia Setentrional, Roraima, Brasil , 2012 .

[27]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[28]  Mikko Vastaranta,et al.  Forest mapping and monitoring using active 3D remote sensing , 2012 .

[29]  M. d'Oliveira,et al.  Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon , 2012 .

[30]  E. Næsset,et al.  Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications , 2012 .

[31]  A. Finley,et al.  Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory , 2013 .

[32]  R. Valbuena,et al.  Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by airborne laser scanning , 2013 .

[33]  Göran Ståhl,et al.  Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data” , 2013 .

[34]  N. Barbier,et al.  Canopy height model characteristics derived from airbone laser scanning and its effectiveness in discriminating various tropical moist forest types , 2013 .

[35]  Elizabeth Tipton,et al.  Stratified Sampling Using Cluster Analysis , 2013, Evaluation review.

[36]  M. Vastaranta,et al.  Status and prospects for LiDAR remote sensing of forested ecosystems , 2013 .

[37]  J. Stape,et al.  Köppen's climate classification map for Brazil , 2013 .

[38]  Roberta E. Martin,et al.  Amazonian landscapes and the bias in field studies of forest structure and biomass , 2014, Proceedings of the National Academy of Sciences.

[39]  Scott J. Goetz,et al.  Regional-scale application of lidar: Variation in forest canopy structure across the southeastern US , 2014 .

[40]  Eric Bastos Gorgens,et al.  Assessing biomass based on canopy height profiles using airborne laser scanning data in eucalypt plantations , 2015 .

[41]  Marcos Longo,et al.  Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. , 2015, Ecology letters.

[42]  Michael W. Palace,et al.  Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data , 2015 .

[43]  Gregory P. Asner,et al.  Spatial variability in tropical forest leaf area density from multireturn lidar and modeling , 2015 .

[44]  E. Ferreira,et al.  Predição da distribuição de espécies florestais usando variáveis topográficas e de índice de vegetação no leste do Acre, Brasil , 2015 .

[45]  L. C. Rodriguez,et al.  IDENTIFICAÇÃO DE ÁRVORES INDIVIDUAIS A PARTIR DE LEVANTAMENTOS LASER AEROTRANSPORTADO POR MEIO DE JANELA INVERSA , 2015 .

[46]  Jonathan P. Dash,et al.  Methods for estimating multivariate stand yields and errors using k-NN and aerial laser scanning , 2015 .

[47]  N. Coops,et al.  Comparing patterns in forest stand structure following variable harvests using airborne laser scanning data , 2015 .

[48]  D. R. Almeida,et al.  Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the Central Amazon using portable profiling LiDAR , 2016 .

[49]  M. Keller,et al.  Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity , 2016, Global change biology.

[50]  P. Corona,et al.  Using classification trees to predict forest structure types from LiDAR data , 2016 .

[51]  Mikko T. Niemi,et al.  Extracting Canopy Surface Texture from Airborne Laser Scanning Data for the Supervised and Unsupervised Prediction of Area-Based Forest Characteristics , 2016, Remote. Sens..

[52]  R. Valbuena,et al.  Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels , 2016 .

[53]  Sassan Saatchi,et al.  Lidar detection of individual tree size in tropical forests , 2016 .

[54]  R. Valbuena,et al.  Fusion of airborne LiDAR and multispectral sensors reveals synergic capabilities in forest structure characterization , 2016 .

[55]  C. Silva,et al.  Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data , 2016 .

[56]  R. Valbuena,et al.  Classification of multilayered forest development classes from low-density national airborne lidar datasets , 2016 .

[57]  Petteri Packalen,et al.  Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data , 2017 .

[58]  Hao Tang,et al.  Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure , 2017, Proceedings of the National Academy of Sciences.

[59]  R. McRoberts,et al.  Multivariate inference for forest inventories using auxiliary airborne laser scanning data , 2017 .

[60]  Ross A. Hill,et al.  Structural attributes of individual trees for identifying homogeneous patches in a tropical rainforest , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[61]  C. Moorman,et al.  Use of LiDAR to define habitat thresholds for forest bird conservation , 2017 .

[62]  H. Balzter,et al.  Airborne laser scanning and tree crown fragmentation metrics for the assessment of Phytophthora ramorum infected larch forest stands , 2017 .

[63]  Michael W. Palace,et al.  Comparison of lidar- and allometry-derived canopy height models in an eastern deciduous forest , 2017 .

[64]  Victoria Meyer,et al.  Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[65]  Carl Seielstad,et al.  A data-driven framework to identify and compare forest structure classes using LiDAR , 2018 .

[66]  Douglas K. Bolton,et al.  Predicting temperate forest stand types using only structural profiles from discrete return airborne lidar , 2018 .

[67]  Tuomo Kauranne,et al.  Valuation of growing stock using multisource GIS data, a stem quality database, and bucking simulation , 2018, Canadian Journal of Forest Research.

[68]  Petteri Packalen,et al.  Airborne laser scanning for tree diameter distribution modelling: a comparison of different modelling alternatives in a tropical single-species plantation , 2018 .

[69]  Ben Somers,et al.  LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy , 2018, Remote Sensing of Environment.

[70]  Carlos Alberto Silva,et al.  Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling , 2019, Remote. Sens..

[71]  P. Meli,et al.  The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration , 2019, Forest Ecology and Management.

[72]  R. Valbuena,et al.  A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions , 2019, Forest Ecology and Management.

[73]  Seung-Kuk Lee,et al.  Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data , 2019, Remote Sensing of Environment.