Gyrokinetic perpendicular dynamics

Gyrokinetic perpendicular dynamics, an important component not systematically considered in previous gyrokinetic theories, is identified and developed. A “distribution function” S and its governing gyrokinetic equation are introduced to describe the gyrokinetic perpendicular dynamics. The complete treatment of the perpendicular current rendered by the gyrokinetic perpendicular dynamics enables one to recover the compressional Alfven wave from the gyrokinetic model. From the viewpoint of gyrokinetic theory, the physics of the compressional Alfven wave is the polarization current at second order. Therefore, in a low frequency gyrokinetic system, the compressional Alfven wave is naturally decoupled from the shear Alfven wave and drift wave. In the gyrocenter coordinates, the gyrophase dependent parts of the distribution function S and f are decoupled from the gyrophase independent part f. Introducing the gyrokinetic perpendicular dynamics also extends the gyrokinetic model to arbitrary frequency modes. As ...

[1]  P. Catto Linearized gyro-kinetics , 1978 .

[2]  R. Dendy,et al.  Gyrokinetic theory of fast wave transmission with arbitrary parallel wave number in a nonuniformly magnetized plasma , 1992 .

[3]  Robert G. Littlejohn,et al.  Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.

[4]  Liu Chen,et al.  Electrostatic waves in general magnetic field configurations , 1983 .

[5]  R. Dendy,et al.  Gyrokinetic theory of perpendicular cyclotron resonance in a nonuniformly magnetized plasma , 1989 .

[6]  Robert G. Littlejohn,et al.  A guiding center Hamiltonian: A new approach , 1979 .

[7]  S. Omohundro,et al.  Geometric Perturbation Theory In Physics , 1986 .

[8]  Hong Qin,et al.  Gyrokinetic theory for arbitrary wavelength electromagnetic modes in tokamaks , 1997 .

[9]  W. Lee,et al.  Gyrokinetic particle simulation of ion temperature gradient drift instabilities , 1988 .

[10]  J. Taylor,et al.  Stability of general plasma equilibria - I formal theory , 1968 .

[11]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Robert G. Littlejohn,et al.  Hamiltonian formulation of guiding center motion , 1981 .

[13]  Application of the gyrokinetic equation to high frequency RF , 1985 .

[14]  A. Brizard Gyrokinetic energy conservation and Poisson-bracket formulation , 1989 .

[15]  Hong Qin,et al.  Symbolic vector analysis in plasma physics , 1999 .

[16]  T. Antonsen,et al.  Kinetic equations for low frequency instabilities in inhomogeneous plasmas , 1980 .

[17]  Michael V Berry,et al.  Anticipations of the Geometric Phase , 1990 .

[18]  M. Berry Classical adiabatic angles and quantal adiabatic phase , 1985 .

[19]  J. Hannay,et al.  Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian , 1985 .

[20]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[21]  Alain J. Brizard,et al.  Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates , 1989, Journal of Plasma Physics.

[22]  H. Qin,et al.  Linear gyrokinetic theory for kinetic magnetohydrodynamic eigenmodes in tokamak plasmas , 1999 .

[23]  Parker,et al.  Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry. , 1993, Physical review letters.

[24]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[25]  T. Hahm,et al.  Turbulent transport reduction by zonal flows: massively parallel simulations , 1998, Science.

[26]  John M. Dawson,et al.  Fluctuation-induced heat transport results from a large global 3D toroidal particle simulation model , 1996 .

[27]  R. Littlejohn Hamiltonian perturbation theory in noncanonical coordinates , 1982 .

[28]  T. S. Hahm,et al.  Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .

[29]  J. Cary LIE TRANSFORM PERTURBATION THEORY FOR HAMILTONIAN SYSTEMS , 1981 .

[30]  J E Dendy,et al.  Gyrokinetic theory of perpendicular ion cyclotron resonance. , 1989, Physical review letters.

[31]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[32]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[33]  Littlejohn,et al.  Phase anholonomy in the classical adiabatic motion of charged particles. , 1988, Physical review. A, General physics.

[34]  E. Frieman,et al.  Drift Instabilities in General Magnetic Field Configurations , 1968 .

[35]  W. Lee,et al.  Gyrokinetic Particle Simulation Model , 1987 .

[36]  Alain J. Brizard,et al.  Nonlinear gyrokinetic theory for finite‐beta plasmas , 1988 .

[37]  Williams,et al.  Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. , 1996, Physical review letters.

[38]  J. Krommes,et al.  Nonlinear gyrokinetic equations , 1983 .

[39]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[40]  P. Catto,et al.  General frequency gyrokinetics , 1981 .

[41]  Liu Chen,et al.  LINEAR OSCILLATIONS IN GENERAL MAGNETICALLY CONFINED PLASMAS , 1983 .

[42]  D. Choi,et al.  Low frequency gyrokinetics in general plasma equilibrium in a hamiltonian formulation , 1985 .

[43]  T. H. Stix Waves in plasmas , 1992 .