Effect of passive eye movement on retinogeniculate transmission in the cat.
暂无分享,去创建一个
1. The nature and time window of interaction between passive phasic eye movement signals and visual stimuli were studied for dorsal lateral geniculate nucleus (LGNd) neurons in the cat. Extracellular recordings were made from single neurons in layer A of the left LGNd of anesthetized paralyzed cats in response to a normalized visual stimulus presented to the right eye at each of several times of movement of the left eye. The left eye was moved passively at a fixed amplitude and velocity while varying the movement onset time with respect to the visual stimulus onset in a randomized and interleaved fashion. Visual stimuli consisted of square-wave modulated circular spots of appropriate contrast, sign, and size to elicit an optimal excitatory response when placed in the neurons' receptive-field (RF) center. 2. Interactions were analyzed for 78 neurons (33 X-neurons, 43 Y-neurons, and 2 physiologically unclassified neurons) on 25-65 trials of identical visual stimuli for each of eight times of eye movement. 3. Sixty percent (47/78) of the neurons tested had a significant eye movement effect (ANOVA, P less than 0.05) on some aspect of their visual response. Of these 47 neurons, 42 (89%) had a significant (P less than 0.05) effect of an appropriately timed eye movement on the number of action potentials, 36 (77%) had a significant effect on the mean peak firing rate, and 31 (66%) were significantly affected as evaluated by both criteria. 4. The eye movement effect on the neurons' visual responses was primarily facilitatory. Facilitation was observed for 37 (79%) of the affected neurons. For 25 of these 37 neurons (68%), the facilitation was significant (P less than 0.05) as evaluated by both criteria (number of action potentials and mean peak firing rate). Ten (21%) of the affected neurons had their visual response significantly inhibited (P less than 0.05). 5. Sixty percent (46/78) of the neurons were tested for the effect of eye movement on both visually elicited activity (visual stimulus contrast = 2 times threshold) and spontaneous activity (contrast = 0). Eye movement significantly affected the visual response of 23 (50%) of these neurons. However, spontaneous activity was significantly affected for only nine (20%) of these neurons. The interaction of the eye movement and visual signals was nonlinear. 6. Nine of 12 neurons (75%) tested had a directionally selective effect of eye movement on the visual response, with most (8/9) preferring the temporal ward direction.(ABSTRACT TRUNCATED AT 400 WORDS)