Geometrical Techniques for Estimating Numbers of Linear Extensions
暂无分享,去创建一个
BÉLA BOLLOBÁS | GRAHAM BRIGHTWELL | ALEXANDER SIDORENKO | B. Bollobás | G. Brightwell | Alexander Sidorenko
[1] László Lovász,et al. Entropy splitting for antiblocking corners and perfect graphs , 1990, Comb..
[2] G. Brightwell. Random k-dimensional orders: Width and number of linear extensions , 1992 .
[3] Jeff Kahn,et al. Entropy and sorting , 1992, STOC '92.
[4] W. Trotter,et al. Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .
[5] B. Toft. Colouring, stable sets and perfect graphs , 1996 .
[6] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[7] M. Meyer. Une Caracterisation Volumique de Certains Espaces Normes de Dimension Finie , 1986 .
[8] Béla Bollobás,et al. Reverse Kleitman Inequalities , 1989 .
[9] László Lovász,et al. Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..
[10] Products of Unconditional Bodies , 1995 .
[11] Richard P. Stanley,et al. Two poset polytopes , 1986, Discret. Comput. Geom..
[12] A. Sidorenko,et al. Inequalities for the number of linear extensions , 1991 .
[13] Martin E. Dyer,et al. A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.