Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system

We propose effective fusion schemes for stationary electronic W state and flying photonic W state, respectively, by using the quantum-dot-microcavity coupled system. The present schemes can fuse a n-qubit W state and a m-qubit W state to a (m + n − 1)-qubit W state, that is, these schemes can be used to not only create large W state with small ones, but also to prepare 3-qubit W states with Bell states. The schemes are based on the optical selection rules and the transmission and reflection rules of the cavity and can be achieved with high probability. We evaluate the effect of experimental imperfections and the feasibility of the schemes, which shows that the present schemes can be realized with high fidelity in both the weak coupling and the strong coupling regimes. These schemes may be meaningful for the large-scale solid-state-based quantum computation and the photon-qubit-based quantum communication.

[1]  Masato Koashi,et al.  Elementary optical gate for expanding an entanglement web , 2008, 0803.1897.

[2]  Ai-Dong Zhu,et al.  Physical optimization of quantum error correction circuits with spatially separated quantum dot spins. , 2013, Optics express.

[3]  Can Yesilyurt,et al.  Enhancing the W State Quantum Network Fusion Process with A Single Fredkin Gate , 2013, 1303.4008.

[4]  Masato Koashi,et al.  Local expansion of photonic W state using a polarization-dependent beamsplitter , 2008, 0810.2850.

[5]  Pierre M. Petroff,et al.  A Coherent Single-Hole Spin in a Semiconductor , 2009, Science.

[6]  Qi Guo,et al.  Counterfactual entanglement distribution without transmitting any particles. , 2014, Optics express.

[7]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[8]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[9]  M. Bayer,et al.  Ultrafast optical rotations of electron spins in quantum dots , 2009, 0910.3940.

[10]  Fu-Guo Deng,et al.  Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities , 2013, Scientific Reports.

[11]  Fu-Guo Deng,et al.  Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. , 2013, Optics express.

[12]  Kyu-Hwang Yeon,et al.  Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system , 2013, 1306.4737.

[13]  Fatih Ozaydin,et al.  Phase damping destroys quantum Fisher information of W states , 2014 .

[14]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[15]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[16]  W. J. Munro,et al.  Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity , 2009, 0910.4549.

[17]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  L. J. Sham,et al.  Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration. , 2006, Physical Review Letters.

[20]  Runyao Duan,et al.  Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. , 2014, Physical review letters.

[21]  Sahin Kaya Ozdemir,et al.  Fusing multiple W states simultaneously with a Fredkin gate , 2014, 1402.3152.

[22]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[23]  Katherine Truex,et al.  Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. , 2010, Physical review letters.

[24]  Masato Koashi,et al.  An optical fusion gate for W-states , 2011, 1103.2195.

[25]  Masato Koashi,et al.  Local transformation of two einstein-podolsky-rosen photon pairs into a three-photon w state. , 2008, Physical review letters.

[26]  S. Economou,et al.  Optical spin initialization and nondestructive measurement in a quantum dot molecule , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[27]  Can Yesilyurt,et al.  An optical gate for simultaneous fusion of four photonic W or Bell states , 2013, Quantum Inf. Process..

[28]  Qi Guo,et al.  Effective scheme for $$W$$W-state fusion with weak cross-Kerr nonlinearities , 2015, Quantum Inf. Process..

[29]  Ziyun Zhang,et al.  Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities , 2014 .

[30]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[31]  Dirk Reuter,et al.  Radiatively limited dephasing in InAs quantum dots , 2004 .

[32]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[33]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[34]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[35]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[36]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[37]  Tie-Jun Wang,et al.  Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities , 2012 .

[38]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[39]  Jinhyoung Lee,et al.  Quantum Secure Communication with W States , 2002, quant-ph/0204003.

[40]  Fu-Guo Deng,et al.  Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities , 2013, 1302.0046.

[41]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[42]  Li Dong,et al.  A nearly deterministic scheme for generating χ-type entangled states with weak cross-Kerr nonlinearities , 2013, Quantum Inf. Process..

[43]  Stefan Nolte,et al.  On-chip generation of high-order single-photon W-states , 2014, Nature Photonics.

[44]  K. Kim,et al.  Quantum estimation of magnetic-field gradient using W-state , 2013, 1309.3994.

[45]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[46]  Masato Koashi,et al.  Demonstration of local expansion toward large-scale entangled webs. , 2010, Physical review letters.

[47]  Qi Guo,et al.  Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities , 2014 .

[48]  M. Feng,et al.  Quantum-information processing in decoherence-free subspace with low-Q cavities , 2010 .

[49]  H. Weinfurter,et al.  THREE-PARTICLE ENTANGLEMENTS FROM TWO ENTANGLED PAIRS , 1997 .

[50]  C. Hu,et al.  Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity , 2010, 1005.5545.