Higher-Dimensional Algebra VII: Groupoidification
暂无分享,去创建一个
[1] M. Khovanov,et al. A categorification of the Temperley-Lieb algebra and Schur quotients of $ U({\frak sl}_2) $ via projective and Zuckerman functors , 1999, math/0002087.
[2] G. M. Kelly,et al. Flexible limits for 2-categories , 1989 .
[3] Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.
[4] A diagrammatic approach to categorification of quantum groups II , 2009 .
[5] M. Szczesny. Representations of Quivers over F1 , 2010, 1006.0912.
[6] G. Williamson,et al. A geometric model for Hochschild homology of Soergel bimodules , 2007, 0707.2003.
[7] Bruna Tanaka Cremonini,et al. Buildings , 1995, Data, Statistics, and Useful Numbers for Environmental Sustainability.
[8] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[9] Mikhail Khovanov,et al. Diagrammatics for Soergel Categories , 2009, Int. J. Math. Math. Sci..
[10] Igor Frenkel,et al. A Categorification of the Jones Polynomial , 2008 .
[11] Vaughan F. R. Jones,et al. Hecke algebra representations of braid groups and link polynomials , 1987 .
[12] Jeffrey Morton. Categorified algebra and quantum mechanics. , 2006 .
[13] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[14] Tom Leinster,et al. Objects of categories as complex numbers , 2002 .
[15] F. Murnaghan,et al. LINEAR ALGEBRAIC GROUPS , 2005 .
[16] Marcelo Aguiar,et al. Monoidal Functors, Species, and Hopf Algebras , 2010 .
[17] Paul B. Garrett,et al. Buildings and Classical Groups , 1997 .
[18] A diagrammatic approach to categorification of quantum groups II , 2008, 0803.4121.
[19] M. Khovanov,et al. A Categorification of the Temperley-Lieb Algebra and Schur Quotients of U(sl2) via Projective and , 2000 .
[20] Categorification of the braid groups , 2004, math/0409593.
[22] R. Rouquier. 2-Kac-Moody algebras , 2008, 0812.5023.
[23] Paul G. Goerss,et al. Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.
[24] K. Behrend. The Lefschetz trace formula for algebraic stacks , 1993 .
[25] A. Weinstein. The Volume of a Differentiable Stack , 2008, 0809.2130.
[26] Olivier Schiffmann,et al. LECTURES ON HALL ALGEBRAS , 2006, math/0611617.
[27] Wolfgang Soergel,et al. The combinatorics of Harish-Chandra bimodules. , 1992 .
[28] Bangming Deng,et al. Ringel-Hall algebras , 2008 .
[29] C. Ringel. Hall algebras revisited , 1992 .
[30] A. Joyal. Foncteurs analytiques et espèces de structures , 1986 .
[31] Claus Michael Ringel,et al. Hall algebras and quantum groups , 1990 .
[32] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[33] Tom Leinster. The Euler characteristic of a category , 2006 .
[34] Symmetric Hilbert spaces arising from species of structures , 2000, math-ph/0007005.
[35] Ross Street,et al. Fibrations in bicategories , 1980 .
[36] Minhyong Kim. A Lefschetz trace formula for equivariant cohomology , 1995 .
[37] James Dolan,et al. From Finite Sets to Feynman Diagrams , 2001 .
[38] Mikhail Khovanov. A categorification of the Jones polynomial , 1999 .
[39] M. Khovanov. Categorifications from planar diagrammatics , 2010, 1008.5084.
[40] C. Stroppel. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors , 2005 .