Higher-Dimensional Algebra VII: Groupoidification

Groupoidification is a form of categorification in which vector spaces are replaced by groupoids, and linear operators are replaced by spans of groupoids. We introduce this idea with a detailed exposition of "degroupoidification": a systematic process that turns groupoids and spans into vector spaces and linear operators. Then we present three applications of groupoidification. The first is to Feynman diagrams. The Hilbert space for the quantum harmonic oscillator arises naturally from degroupoidifying the groupoid of finite sets and bijections. This allows for a purely combinatorial interpretation of creation and annihilation operators, their commutation relations, field operators, their normal-ordered powers, and finally Feynman diagrams. The second application is to Hecke algebras. We explain how to groupoidify the Hecke algebra associated to a Dynkin diagram whenever the deformation parameter q is a prime power. We illustrate this with the simplest nontrivial example, coming from the A2 Dynkin diagram. In this example we show that the solution of the Yang-Baxter equation built into the A2 Hecke algebra arises naturally from the axioms of projective geometry applied to the projective plane over the finite field with q elements. The third application is to Hall algebras. We explain how the standard construction of the Hall algebra from the category of representations of a simply-laced quiver can be seen as an example of degroupoidification. This in turn provides a new way to categorify - or more precisely, groupoidify - the positive part of the quantum group associated to the quiver.

[1]  M. Khovanov,et al.  A categorification of the Temperley-Lieb algebra and Schur quotients of $ U({\frak sl}_2) $ via projective and Zuckerman functors , 1999, math/0002087.

[2]  G. M. Kelly,et al.  Flexible limits for 2-categories , 1989 .

[3]  Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.

[4]  A diagrammatic approach to categorification of quantum groups II , 2009 .

[5]  M. Szczesny Representations of Quivers over F1 , 2010, 1006.0912.

[6]  G. Williamson,et al.  A geometric model for Hochschild homology of Soergel bimodules , 2007, 0707.2003.

[7]  Bruna Tanaka Cremonini,et al.  Buildings , 1995, Data, Statistics, and Useful Numbers for Environmental Sustainability.

[8]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[9]  Mikhail Khovanov,et al.  Diagrammatics for Soergel Categories , 2009, Int. J. Math. Math. Sci..

[10]  Igor Frenkel,et al.  A Categorification of the Jones Polynomial , 2008 .

[11]  Vaughan F. R. Jones,et al.  Hecke algebra representations of braid groups and link polynomials , 1987 .

[12]  Jeffrey Morton Categorified algebra and quantum mechanics. , 2006 .

[13]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[14]  Tom Leinster,et al.  Objects of categories as complex numbers , 2002 .

[15]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[16]  Marcelo Aguiar,et al.  Monoidal Functors, Species, and Hopf Algebras , 2010 .

[17]  Paul B. Garrett,et al.  Buildings and Classical Groups , 1997 .

[18]  A diagrammatic approach to categorification of quantum groups II , 2008, 0803.4121.

[19]  M. Khovanov,et al.  A Categorification of the Temperley-Lieb Algebra and Schur Quotients of U(sl2) via Projective and , 2000 .

[20]  Categorification of the braid groups , 2004, math/0409593.

[22]  R. Rouquier 2-Kac-Moody algebras , 2008, 0812.5023.

[23]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[24]  K. Behrend The Lefschetz trace formula for algebraic stacks , 1993 .

[25]  A. Weinstein The Volume of a Differentiable Stack , 2008, 0809.2130.

[26]  Olivier Schiffmann,et al.  LECTURES ON HALL ALGEBRAS , 2006, math/0611617.

[27]  Wolfgang Soergel,et al.  The combinatorics of Harish-Chandra bimodules. , 1992 .

[28]  Bangming Deng,et al.  Ringel-Hall algebras , 2008 .

[29]  C. Ringel Hall algebras revisited , 1992 .

[30]  A. Joyal Foncteurs analytiques et espèces de structures , 1986 .

[31]  Claus Michael Ringel,et al.  Hall algebras and quantum groups , 1990 .

[32]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[33]  Tom Leinster The Euler characteristic of a category , 2006 .

[34]  Symmetric Hilbert spaces arising from species of structures , 2000, math-ph/0007005.

[35]  Ross Street,et al.  Fibrations in bicategories , 1980 .

[36]  Minhyong Kim A Lefschetz trace formula for equivariant cohomology , 1995 .

[37]  James Dolan,et al.  From Finite Sets to Feynman Diagrams , 2001 .

[38]  Mikhail Khovanov A categorification of the Jones polynomial , 1999 .

[39]  M. Khovanov Categorifications from planar diagrammatics , 2010, 1008.5084.

[40]  C. Stroppel Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors , 2005 .