Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .

[1]  G. K. Wehner,et al.  Energy Distribution of Atoms Sputtered from Polycrystalline Metals , 1969 .

[2]  V. Shulga Density effects in sputtering at normal and oblique ion bombardment , 2002 .

[3]  S. Dew,et al.  Discrete-path transport theory of physical sputtering , 2002 .

[4]  J. Roth,et al.  Angular dependence of the sputtering yield of rough beryllium surfaces , 1999 .

[5]  Dan M. Goebel,et al.  Development and testing of carbon-based ion optics for 30-cm ion thrusters , 2003 .

[6]  John E. Foster,et al.  Low Energy Xenon Ion Sputtering Yield Measurements , 2001 .

[7]  G. K. Wehner,et al.  Influence of the Angle of Incidence on Sputtering Yields , 1959 .

[8]  V. Dose,et al.  The influence of surface roughness on the angular dependence of the sputter yield , 1998 .

[9]  Paul J. Wilbur,et al.  XENON SPUTTER YIELD MEASUREMENTS FOR ION THRUSTER MATERIALS , 2003 .

[10]  P. K. Ray,et al.  On the Measurement of Low Energy Sputtering Yield Using Rutherford Backscattering Spectrometry , 1997 .

[11]  W. Graham,et al.  Sputtering of copper atoms by keV atomic and molecular ions: A comparison of experiment with analytical and computer based models , 2002 .

[12]  P. Keblinski,et al.  Effects of terraces, surface steps and “over-specular” reflection due to inelastic energy losses on angular scattering spectra for glancing incidence scattering , 2002 .

[13]  J. Bohdansky,et al.  An analytical formula and important parameters for low‐energy ion sputtering , 1980 .

[14]  Y. Yamamura,et al.  ENERGY DEPENDENCE OF ION-INDUCED SPUTTERING YIELDS FROM MONATOMIC SOLIDS AT NORMAL INCIDENCE , 1996 .

[16]  G. Wehner,et al.  Energy Distribution of Sputtered Cu Atoms , 1964 .

[17]  R. Doernera Sputtering yield measurements during low energy xenon plasma bombardment , 2007 .

[18]  G. K. Wehner,et al.  Angular Distribution of Sputtered Material , 1960 .

[19]  J. Biersack,et al.  Sputtering studies with the Monte Carlo Program TRIM.SP , 1984 .

[20]  M. A. Karolewski Classical dynamics simulations of directional effects in sputtering from a bimetallic surface: c(2 × 2)-Pb/Cu(100) , 2002 .

[21]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[22]  Dan M. Goebel,et al.  Sputtering yield measurements during low energy xenon plasma bombardment , 2003 .

[23]  D. Márton,et al.  Sputtering-induced surface roughness of metallic thin films , 1990 .

[24]  Wolfgang Eckstein,et al.  Computer simulation of ion-solid interactions , 1991 .

[25]  S. Dew,et al.  Estimates of differential sputtering yields for deposition applications , 2001 .

[26]  A. Goehlich,et al.  Anisotropy effects in physical sputtering investigated by laser-induced fluorescence spectroscopy , 2000 .

[27]  Y. Yamamura,et al.  Angular dependence of sputtering yields of monatomic solids , 1983 .

[28]  G. K. Wehner,et al.  Sputtering Yields for Low Energy He+‐, Kr+‐, and Xe+‐Ion Bombardment , 1962 .

[29]  J. Mahan Physical Vapor Deposition of Thin Films , 2000 .