A Gröbner-basis theory for divide-and-conquer recurrences

We introduce a variety of noncommutative polynomials that represent divide-and-conquer recurrence systems. Our setting involves at the same time variables that behave like words in purely noncommutative algebras and variables governed by commutation rules like in skew polynomial rings. We then develop a Gröbner-basis theory for left ideals of such polynomials. Strikingly, the nature of commutations generally prevents the leading monomial of a polynomial product to be the product of the leading monomials. To overcome the difficulty, we consider a specific monomial ordering, together with a restriction to monic divisors in intermediate steps. After obtaining an analogue of Buchberger's algorithm, we develop a variant of the F4 algorithm, whose speed we compare.

[1]  Svante Janson,et al.  Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half , 2017 .

[2]  Ferdinando Mora,et al.  Groebner Bases for Non-Commutative Polynomial Rings , 1985, AAECC.

[3]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[4]  Joachim Apel,et al.  An Extension of Buchberger's Algorithm and Calculations in Enveloping Fields of Lie Algebras , 1988, J. Symb. Comput..

[5]  André Galligo,et al.  Some algorithmic questions on ideals of differential operators , 1985 .

[6]  Nobuki Takayama,et al.  Gröbner basis and the problem of contiguous relations , 1989 .

[7]  Philippe Dumas,et al.  Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and analytic approaches collated , 2014, Theor. Comput. Sci..

[8]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[9]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[10]  Teo Mora Standard Bases and Non-Noetherianity: Non-Commutative Polynomial Rings , 1986, AAECC.

[11]  Heinz Kredel,et al.  Solvable polynomial rings , 1993 .

[12]  C. L. Wangneo On skew polynomial rings , 2012 .

[13]  Elizabeth L. Mansfield,et al.  Elimination theory for differential difference polynomials , 2003, ISSAC '03.

[14]  Edward L. Green An Introduction to Noncommutative Gröbner Bases , 2018 .

[15]  Viktor Levandovskyy,et al.  Plural: a computer algebra system for noncommutative polynomial algebras , 2003, ISSAC '03.

[16]  Volker Weispfenning,et al.  Finite Gröbner bases in non-Noetherian skew polynomial rings , 1992, ISSAC '92.

[17]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[18]  Teo Mora,et al.  Groebner Bases in Non-Commutative Algebras , 1988, ISSAC.

[19]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[20]  Viktor Levandovskyy,et al.  Skew polynomial rings, Gröbner bases and the letterplace embedding of the free associative algebra , 2010, J. Symb. Comput..

[21]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[22]  V A Ufnarovskiĭ,et al.  ON THE USE OF GRAPHS FOR COMPUTING A BASIS, GROWTH AND HILBERT SERIES OF ASSOCIATIVE ALGEBRAS , 1991 .