A faster divide-and-conquer algorithm for constructing delaunay triangulations
暂无分享,去创建一个
[1] Robin Sibson,et al. Locally Equiangular Triangulations , 1978, Comput. J..
[2] Frank K. Hwang,et al. An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees , 1979, JACM.
[3] D. H. McLain,et al. Two Dimensional Interpolation from Random Data , 1976, Comput. J..
[4] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[5] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[6] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[7] Chak-Kuen Wong,et al. Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..
[8] Arne Maus,et al. Delaunay triangulation and the convex hull ofn points in expected linear time , 1984, BIT.
[9] D. T. Lee,et al. Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.
[10] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[11] C. Lawson. Software for C1 interpolation , 1977 .
[12] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[13] D. T. Lee,et al. Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.
[14] Robin Sibson,et al. Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..
[15] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[16] Bruce W. Weide,et al. Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.
[17] Kazuo Murota,et al. IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .