Fast low‐rank approximations of multidimensional integrals in ion‐atomic collisions modelling

SUMMARY An efficient technique based on low-rank separated approxim ations is proposed for computation of threedimensional integrals arising in the energy deposition model that describes ion-atomic collisions. Direct tensor-product quadrature requires grids of size 4000 3 which is unacceptable. Moreover, several of such integrals have to be computed simultaneously for different values of parameters. To reduce the complexity, we use the structure of the integrand and apply numerical linear algebra techniques for the construction of low-rank approximation. The resulting algorithm is 10 3 faster than spectral quadratures in spherical coordinates used in the original DEPOSIT code. The approach can be generalized to other multidimensional problems in physics. Copyright c 0000 John Wiley & Sons, Ltd.

[1]  Boris N. Khoromskij,et al.  Tensor decomposition in electronic structure calculations on 3D Cartesian grids , 2009, J. Comput. Phys..

[2]  Ivan P. Gavrilyuk,et al.  Hierarchical Tensor-Product Approximation to the Inverse and Related Operators for High-Dimensional Elliptic Problems , 2004, Computing.

[3]  Dietrich Braess,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .

[4]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[5]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[7]  Mikhail S. Litsarev,et al.  Electron loss of fast many-electron ions colliding with neutral atoms: possible scaling rules for the total cross sections , 2009 .

[8]  Reinhold Schneider,et al.  Tensor-Structured Factorized Calculation of Two-Electron Integrals in a General Basis , 2013, SIAM J. Sci. Comput..

[9]  Mikhail S. Litsarev,et al.  Single- and multiple-electron loss cross-sections for fast heavy ions colliding with neutrals: Semi-classical calculations , 2009 .

[10]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[11]  Severnyi Kavkaz Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .

[12]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[13]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[14]  L. Vainshtein,et al.  ATOMIC PHYSICS FOR HOT PLASMAS , 1988 .

[15]  Mikhail S. Litsarev,et al.  Electron Loss and Capture Processes in Collisions of Heavy Many-Electron Ions with Neutral Atoms , 2012 .

[16]  Mikhail S. Litsarev,et al.  Multiple ionization of fast heavy ions by neutral atoms in the energy deposition model , 2008 .

[17]  William F. Meggers,et al.  Quantum Theory of Atomic Structure , 1960 .

[18]  Daiji Kato,et al.  The energy-deposition model: electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies , 2010 .

[19]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[20]  Inga Yur’evna Tolstikhina,et al.  Collision processes involving heavy many-electron ions interacting with neutral atoms , 2013 .

[21]  Mikhail S. Litsarev,et al.  The DEPOSIT computer code: Calculations of electron-loss cross-sections for complex ions colliding with neutral atoms , 2012, Comput. Phys. Commun..

[22]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[23]  Boris N. Khoromskij,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling in Dimension , 2022 .

[24]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[25]  Mikhail Litsarev,et al.  Multiple-electron losses of highly charged ions colliding with neutral atoms , 2012, 1209.0076.

[26]  I. Oseledets Constructive Representation of Functions in Low-Rank Tensor Formats , 2012, Constructive Approximation.

[27]  I. V. Oseledets,et al.  Fast multidimensional convolution in low-rank formats via cross approximation , 2014 .

[28]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[29]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[30]  H. Tawara,et al.  Atomic processes in basic and applied physics , 2012 .

[31]  Ivan V. Oseledets,et al.  Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation , 2015, SIAM J. Sci. Comput..

[32]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[33]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part II. HKT Representation of Certain Operators , 2005, Computing.

[34]  J. Meli,et al.  Ionization phenomena in high-energy atomic collisions☆ , 1970 .

[35]  Mikhail S. Litsarev,et al.  The DEPOSIT computer code based on the low rank approximations , 2014, Comput. Phys. Commun..

[36]  G. Beylkin,et al.  Approximation by exponential sums revisited , 2010 .

[37]  Boris N. Khoromskij,et al.  Tensor-Structured Preconditioners and Approximate Inverse of Elliptic Operators in ℝd , 2009 .

[38]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[39]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[40]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[41]  C. Cocke,et al.  Production of highly charged low-velocity recoil ions by heavy-ion bombardment of rare-gas targets. [25 to 45 MeV] , 1979 .

[42]  Mikhail S. Litsarev,et al.  Collisions of Be, Fe, Mo and W atoms and ions with hydrogen isotopes: electron capture and electron loss cross sections , 2014 .

[43]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[44]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[45]  N. Bohr Dr. phil.,et al.  LX. On the decrease of velocity of swiftly moving electrified particles in passing through matter , 1915 .

[46]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[47]  S. Goreinov,et al.  Pseudo-skeleton approximations by matrices of maximal volume , 1997 .

[48]  F. Salvat,et al.  Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z=1-92). , 1987, Physical review. A, General physics.