Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models

As the number of single‐cell transcriptomics datasets grows, the natural next step is to integrate the accumulating data to achieve a common ontology of cell types and states. However, it is not straightforward to compare gene expression levels across datasets and to automatically assign cell type labels in a new dataset based on existing annotations. In this manuscript, we demonstrate that our previously developed method, scVI, provides an effective and fully probabilistic approach for joint representation and analysis of scRNA‐seq data, while accounting for uncertainty caused by biological and measurement noise. We also introduce single‐cell ANnotation using Variational Inference (scANVI), a semi‐supervised variant of scVI designed to leverage existing cell state annotations. We demonstrate that scVI and scANVI compare favorably to state‐of‐the‐art methods for data integration and cell state annotation in terms of accuracy, scalability, and adaptability to challenging settings. In contrast to existing methods, scVI and scANVI integrate multiple datasets with a single generative model that can be directly used for downstream tasks, such as differential expression. Both methods are easily accessible through scvi‐tools.

[1]  Wouter M. Kouw,et al.  A Review of Domain Adaptation without Target Labels , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Avraam Bardos,et al.  Interpretable Dimensionality Reduction , 2021 .

[3]  M Dugas,et al.  Benchmarking atlas-level data integration in single-cell genomics , 2020, Nature Methods.

[4]  Allon M. Klein,et al.  Lineage tracing on transcriptional landscapes links state to fate during differentiation , 2018, Science.

[5]  Lior Pachter,et al.  Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins , 2019, Nature Biotechnology.

[6]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[7]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[8]  Michael I. Jordan,et al.  A joint model of unpaired data from scRNA-seq and spatial transcriptomics for imputing missing gene expression measurements , 2019, ArXiv.

[9]  Valentine Svensson,et al.  Droplet scRNA-seq is not zero-inflated , 2019, Nature Biotechnology.

[10]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[11]  Rafael A. Irizarry,et al.  Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model , 2019, Genome Biology.

[12]  Fabian J Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2019, Nature Communications.

[13]  Martin Hemberg,et al.  M3Drop: dropout-based feature selection for scRNASeq , 2018, Bioinform..

[14]  C. Greene,et al.  Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics , 2018, PSB.

[15]  Casper Kaae Sønderby,et al.  scVAE: Variational auto-encoders for single-cell gene expression data , 2018, bioRxiv.

[16]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[17]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[18]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[19]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[20]  Florian Wagner,et al.  Moana: A robust and scalable cell type classification framework for single-cell RNA-Seq data , 2018, bioRxiv.

[21]  Jin Gu,et al.  VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder , 2018, Genom. Proteom. Bioinform..

[22]  Michael I. Jordan,et al.  A Deep Generative Model for Semi-Supervised Classification with Noisy Labels , 2018, ArXiv.

[23]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[24]  Nir Yosef,et al.  Functional interpretation of single cell similarity maps , 2018, Nature Communications.

[25]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[26]  Nir Yosef,et al.  SymSim: simulating multi-faceted variability in single cell RNA sequencing , 2018, bioRxiv.

[27]  Rodrigo C. Barros,et al.  Hierarchical Multi-Label Classification Networks , 2018, ICML.

[28]  Lu Wen,et al.  Boosting the power of single-cell analysis , 2018, Nature Biotechnology.

[29]  Michael I. Jordan,et al.  Information Constraints on Auto-Encoding Variational Bayes , 2018, NeurIPS.

[30]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[31]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[32]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[33]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[34]  L. Held,et al.  On p-Values and Bayes Factors , 2018 .

[35]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[36]  Samuel L. Wolock,et al.  Population Snapshots Predict Early Hematopoietic and Erythroid Hierarchies , 2018, Nature.

[37]  Smita Krishnaswamy,et al.  MAGAN: Aligning Biological Manifolds , 2018, ICML.

[38]  Kevin R. Moon,et al.  Exploring single-cell data with deep multitasking neural networks , 2017, Nature Methods.

[39]  Jung-Woo Ha,et al.  StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Nuno A. Fonseca,et al.  Expression Atlas: gene and protein expression across multiple studies and organisms , 2017, Nucleic Acids Res..

[41]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[42]  Harshad Rai,et al.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , 2018 .

[43]  S. Dudoit,et al.  A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.

[44]  S. Linnarsson,et al.  Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing , 2018, Nature Neuroscience.

[45]  James T. Webber,et al.  Single-cell transcriptomic characterization of 20 organs and tissues from individual mice creates a Tabula Muris , 2017 .

[46]  Sandrine Dudoit,et al.  Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq , 2017 .

[47]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[48]  Christoph Ziegenhain,et al.  powsimR: Power analysis for bulk and single cell RNA-seq experiments , 2017, bioRxiv.

[49]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[50]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[51]  Anne Condon,et al.  Interpretable dimensionality reduction of single cell transcriptome data with deep generative models , 2017, Nature Communications.

[52]  Fabian J Theis,et al.  Single cells make big data: New challenges and opportunities in transcriptomics , 2017 .

[53]  Sandrine Dudoit,et al.  Normalizing single-cell RNA sequencing data: challenges and opportunities , 2017, Nature Methods.

[54]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[55]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[56]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[57]  Jacob Goldberger,et al.  Training deep neural-networks using a noise adaptation layer , 2016, ICLR.

[58]  Jun Zhao,et al.  Removal of batch effects using distribution‐matching residual networks , 2016, Bioinform..

[59]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[60]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[61]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[62]  T. Mikkelsen,et al.  Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells , 2016, Nature Communications.

[63]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[64]  Nir Yosef,et al.  FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data , 2016, BMC Bioinformatics.

[65]  Hsin C. Lin,et al.  Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells , 2016, Proceedings of the National Academy of Sciences.

[66]  Ole Winther,et al.  Auxiliary Deep Generative Models , 2016, ICML.

[67]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[68]  Kate Saenko,et al.  Return of Frustratingly Easy Domain Adaptation , 2015, AAAI.

[69]  E. Hovig,et al.  Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses , 2015, Biostatistics.

[70]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[71]  Max Welling,et al.  The Variational Fair Autoencoder , 2015, ICLR.

[72]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[73]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[74]  Rona S. Gertner,et al.  Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity , 2015, Cell.

[75]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[76]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[77]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[78]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[79]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[80]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[81]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[82]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[83]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[84]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[85]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[86]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[87]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[88]  Philip S. Yu,et al.  Transfer Feature Learning with Joint Distribution Adaptation , 2013, 2013 IEEE International Conference on Computer Vision.

[89]  Barbara Caputo,et al.  Frustratingly Easy NBNN Domain Adaptation , 2013, 2013 IEEE International Conference on Computer Vision.

[90]  O. Troyanskaya,et al.  Defining cell-type specificity at the transcriptional level in human disease , 2013, Genome research.

[91]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[92]  Eva K. Lee,et al.  Systems Biology of Seasonal Influenza Vaccination in Humans , 2011, Nature Immunology.

[93]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[94]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[95]  M. Cam,et al.  The human reticulocyte transcriptome. , 2007, Physiological genomics.

[96]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[97]  Yee Whye Teh,et al.  A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2006, NIPS.

[98]  Tony O’Hagan Bayes factors , 2006 .

[99]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[100]  the original work is properly cited. , 2022 .