A comparative analysis of host–parasitoid models with density dependence preceding parasitism

ABSTRACT We present a systematic comparison and analysis of four discrete-time, host–parasitoid models. For each model, we specify that density-dependent effects occur prior to parasitism in the life cycle of the host. We compare density-dependent growth functions arising from the Beverton–Holt and Ricker maps, as well as parasitism functions assuming either a Poisson or negative binomial distribution for parasitoid attacks. We show that overcompensatory density-dependence leads to period-doubling bifurcations, which may be supercritical or subcritical. Stronger parasitism from the Poisson distribution leads to loss of stability of the coexistence equilibrium through a Neimark–Sacker bifurcation, resulting in population cycles. Our analytic results also revealed dynamics for one of our models that were previously undetected by authors who conducted a numerical investigation. Finally, we emphasize the importance of clearly presenting biological assumptions that are inherent to the structure of a discrete-time model in order to promote communication and broader understanding.

[1]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[2]  E. I. Jury,et al.  Theory and application of the z-transform method , 1965 .

[3]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[4]  J. Lawton,et al.  Dynamic complexity in predator-prey models framed in difference equations , 1975, Nature.

[5]  M. Hassell The dynamics of arthropod predator-prey systems. , 1979, Monographs in population biology.

[6]  Robert M. May,et al.  HOST-PARASITOID SYSTEMS IN PATCHY ENVIRONMENTS: A PHENOMENOLOGICAL MODEL , 1978 .

[7]  A. P. Gutierrez,et al.  An assessment of the use of stability analyses in population ecology. , 1980 .

[8]  R. May,et al.  DENSITY DEPENDENCE IN HOST-PARASITOID MODELS , 1981 .

[9]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[10]  David Whitley,et al.  Discrete Dynamical Systems in Dimensions One and Two , 1983 .

[11]  H. Lauwerier 4. Two-dimensional iterative maps , 1986 .

[12]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[13]  M. Kot,et al.  The subcritical collapse of predator populations in discrete-time predator-prey models. , 1992, Mathematical biosciences.

[14]  H. Godfray,et al.  Parasitoids: Behavioral and Evolutionary Ecology , 1993 .

[15]  Wayne M. Getz,et al.  Modelling the biological control of insect pests: a review of host-parasitoid models , 1996 .

[16]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[17]  N. Barlow Theoretical Approaches to Biological Control: Models in biological control: a field guide , 1999 .

[18]  Michael P. Hassell,et al.  The Spatial and Temporal Dynamics of Host-Parasitoid Interactions , 2000 .

[19]  H. Byrne,et al.  Mathematical Biology , 2002 .

[20]  William W. Murdoch,et al.  Consumer-resource dynamics , 2003 .

[21]  H. Godfray Parasitoids , 2004, Current Biology.

[22]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[23]  Johannes Müller,et al.  A Course in Mathematical Biology , 2006 .

[24]  R. Kon Multiple attractors in host-parasitoid interactions: coexistence and extinction. , 2006, Mathematical biosciences.

[25]  Linda J. S. Allen,et al.  An introduction to mathematical biology , 2006 .

[26]  Yun Kang,et al.  Dynamics of a plant–herbivore model , 2008, Journal of biological dynamics.

[27]  Derek M. Johnson,et al.  Dynamics of discrete-time larch budmoth population models , 2009, Journal of biological dynamics.

[28]  J. Roland,et al.  The impact of parasitoid emergence time on host-parasitoid population dynamics. , 2009, Theoretical population biology.

[29]  S. Jang,et al.  Discrete-time host–parasitoid models with pest control , 2012, Journal of biological dynamics.

[30]  Sandeep Krishna,et al.  Inducing phase‐locking and chaos in cellular oscillators by modulating the driving stimuli , 2011, FEBS letters.

[31]  S. Elaydi,et al.  Stability and invariant manifolds of a generalized Beddington host-parasitoid model , 2013, Journal of biological dynamics.

[32]  P. Turchin Complex Population Dynamics: A Theoretical/Empirical Synthesis , 2013 .

[33]  Peter Turchin,et al.  Complex Population Dynamics: A Theoretical/Empirical Synthesis , 2013 .

[34]  R. Asheghi Bifurcations and dynamics of a discrete predator–prey system , 2014, Journal of biological dynamics.

[35]  J. Argyris,et al.  An Exploration of Dynamical Systems and Chaos: Completely Revised and Enlarged Second Edition , 2015 .

[36]  John Argyris,et al.  An exploration of dynamical systems and chaos , 2015 .

[37]  M. Khan,et al.  Qualitative Behaviour of Generalised Beddington Model , 2016 .

[38]  B. Dennis,et al.  A discrete-time host–parasitoid model with an Allee effect , 2015, Journal of biological dynamics.

[39]  B. Dennis,et al.  KAPPA FUNCTION AS A UNIFYING FRAMEWORK FOR DISCRETE POPULATION MODELING , 2016 .

[40]  S. Elaydi,et al.  Stability of a predator–prey model with refuge effect , 2016 .

[41]  Qamar Din,et al.  Global stability and Neimark-Sacker bifurcation of a host-parasitoid model , 2017, Int. J. Syst. Sci..