Towards a unified definition of maximum likelihood

A unified definition of maximum likelihood (ml) is given. It is based on a pairwise comparison of probability measures near the observed data point. This definition does not suffer from the usual inadequacies of earlier definitions, i.e., it does not depend on the choice of a density version in the dominated case. The definition covers the undominated case as well, i.e., it provides a consistent approach to nonparametric ml problems, which heretofore have been solved on a more less ad hoc basis. It is shown that the new ml definition is a true extension of the classical ml approach, as it is practiced in the dominated case. Hence the classical methodology can simply be subsumed. Parametric and nonparametric examples are discussed.