Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques
暂无分享,去创建一个
[1] Keith Beven,et al. Changing ideas in hydrology — The case of physically-based models , 1989 .
[2] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[3] P. Mantovan,et al. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .
[4] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[5] R. Moore. The probability-distributed principle and runoff production at point and basin scales , 1985 .
[6] Kathryn B. Laskey,et al. Population Markov Chain Monte Carlo , 2004, Machine Learning.
[7] Keith Beven,et al. The future of distributed models: model calibration and uncertainty prediction. , 1992 .
[8] S. Sorooshian,et al. Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .
[9] George Kuczera,et al. Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms , 1999 .
[10] Cajo J. F. ter Braak,et al. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..
[11] S. Sorooshian,et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .
[12] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[13] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[14] S. Sorooshian,et al. Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .
[15] B. Bates,et al. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .
[16] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[17] K. Beven,et al. Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .
[18] Murugesu Sivapalan,et al. Dominant physical controls on hourly flow predictions and the role of spatial variability: Mahurangi catchment, New Zealand , 2003 .
[19] William P. Kustas,et al. INCORPORATING RADIATION INPUTS INTO THE SNOWMELT RUNOFF MODEL , 1996 .
[20] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[21] George Kuczera,et al. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .
[22] Breanndán Ó Nualláin,et al. Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .
[23] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[24] Stephen P. Brooks,et al. Markov chain Monte Carlo method and its application , 1998 .
[25] William P. Kustas,et al. A simple energy budget algorithm for the snowmelt runoff model. , 1994 .
[26] Ashish Sharma,et al. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .
[27] M. Sivapalan,et al. The role of ¿top-down¿ modelling for Prediction in Ungauged Basins (PUB) , 2003 .
[28] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[29] Mark E. Borsuk,et al. On Monte Carlo methods for Bayesian inference , 2003 .
[30] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[31] B. Renard,et al. An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima , 2006 .
[32] S. Uhlenbrook,et al. Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure , 1999 .
[33] S. Kou,et al. Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.
[34] B. Bates,et al. A Bayesian Approach to parameter estimation and pooling in nonlinear flood event models , 1999 .