Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques

[1] Bayesian methods, and particularly Markov chain Monte Carlo (MCMC) techniques, are extremely useful in uncertainty assessment and parameter estimation of hydrologic models. However, MCMC algorithms can be difficult to implement successfully because of the sensitivity of an algorithm to model initialization and complexity of the parameter space. Many hydrologic studies, even relatively simple conceptualizations, are hindered by complex parameter interactions where typical uncertainty methods are harder to apply. This paper presents comparisons between three recently introduced MCMC approaches, the adaptive Metropolis, the delayed rejection adaptive Metropolis, and the differential evolution Markov chain algorithms via two case studies: (1) a synthetic Gaussian mixture with five parameters and two modes and (2) a real-world hydrologic modeling scenario where each algorithm will serve as the uncertainty and parameter estimation framework for a conceptual precipitation-runoff model.

[1]  Keith Beven,et al.  Changing ideas in hydrology — The case of physically-based models , 1989 .

[2]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[3]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .

[4]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[5]  R. Moore The probability-distributed principle and runoff production at point and basin scales , 1985 .

[6]  Kathryn B. Laskey,et al.  Population Markov Chain Monte Carlo , 2004, Machine Learning.

[7]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[8]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[9]  George Kuczera,et al.  Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms , 1999 .

[10]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[11]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[12]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[13]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[14]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[15]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[16]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[17]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[18]  Murugesu Sivapalan,et al.  Dominant physical controls on hourly flow predictions and the role of spatial variability: Mahurangi catchment, New Zealand , 2003 .

[19]  William P. Kustas,et al.  INCORPORATING RADIATION INPUTS INTO THE SNOWMELT RUNOFF MODEL , 1996 .

[20]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[21]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[22]  Breanndán Ó Nualláin,et al.  Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .

[23]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[24]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[25]  William P. Kustas,et al.  A simple energy budget algorithm for the snowmelt runoff model. , 1994 .

[26]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[27]  M. Sivapalan,et al.  The role of ¿top-down¿ modelling for Prediction in Ungauged Basins (PUB) , 2003 .

[28]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[29]  Mark E. Borsuk,et al.  On Monte Carlo methods for Bayesian inference , 2003 .

[30]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[31]  B. Renard,et al.  An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima , 2006 .

[32]  S. Uhlenbrook,et al.  Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure , 1999 .

[33]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[34]  B. Bates,et al.  A Bayesian Approach to parameter estimation and pooling in nonlinear flood event models , 1999 .