RNA-2QCFA: Evolving Two-way Quantum Finite Automata with Classical States for RNA Secondary Structures

Recently, the use of mathematical methods and computer science applications have got significant response among biochemists and biologists to modeling the biological systems. The computational and mathematical methods have enormous potential for modeling the deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structures. The modeling of DNA and RNA secondary structures using automata theory had a significant impact in the fields of computer science. It is a natural goal to model the RNA secondary biomolecular structures using quantum computational models. Two-way quantum finite automata with classical states are more dominant than two-way probabilistic finite automata in language recognition. The main objective of this paper is on using two-way quantum finite automata with classical states to simulate, model and analyze the ribonucleic acid (RNA) sequences.

[1]  CohenJacques Bioinformaticsan introduction for computer scientists , 2004 .

[2]  Tsau-Young Lin,et al.  Stochastic Finite Automata for the translation of DNA to protein , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[3]  Srinivas Aluru,et al.  Finding Motifs in Biological Sequences Using the Micron Automata Processor , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Shenggen Zheng,et al.  State succinctness of two-way finite automata with quantum and classical states , 2012, Theor. Comput. Sci..

[6]  Kumar S. Ray,et al.  1-Way Multihead Quantum Finite State Automata , 2016 .

[7]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[8]  Henning Fernau,et al.  Universal Matrix Insertion Grammars with Small Size , 2017, UCNC.

[9]  Marta Dueñas-Díez,et al.  How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata , 2019, SSRN Electronic Journal.

[10]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[11]  Khalid Raza,et al.  Application Of Data Mining In Bioinformatics , 2012, ArXiv.

[12]  Yoshihiro Ito,et al.  Dumbbell-shaped nanocircular RNAs for RNA interference. , 2007, Journal of the American Chemical Society.

[13]  V. Brendel,et al.  Genome structure described by formal languages. , 1984, Nucleic acids research.

[14]  Marats Golovkins,et al.  Quantum Pushdown Automata , 2000, SOFSEM.

[15]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[16]  Shenggen Zheng,et al.  Some Languages Recognized by Two-Way Finite Automata with Quantum and Classical States , 2011, Int. J. Found. Comput. Sci..

[17]  Andrei Khrennikov,et al.  Automaton model of protein: dynamics of conformational and functional states , 2017, Progress in biophysics and molecular biology.

[18]  Amandeep Singh Bhatia,et al.  Quantum ω-Automata over Infinite Words and Their Relationships , 2019, International Journal of Theoretical Physics.

[19]  B. Honig,et al.  Structure-based prediction of protein-protein interactions on a genome-wide scale , 2012, Nature.

[20]  Russell L. Malmberg,et al.  Stochastic modeling of RNA pseudoknotted structures: a grammatical approach , 2003, ISMB.

[21]  David B. Searls,et al.  The computational linguistics of biological sequences , 1993, ISMB 1995.

[22]  Jacques Cohen,et al.  Bioinformatics—an introduction for computer scientists , 2004, CSUR.

[23]  Sivan Yogev,et al.  Parallel biomolecular computation on surfaces with advanced finite automata. , 2005, Journal of the American Chemical Society.

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  Jozef Gruska,et al.  Multi-letter quantum finite automata: decidability of the equivalence and minimization of states , 2011, Acta Informatica.

[26]  Lakshmanan Kuppusamy,et al.  Formal Language Representation and Modelling Structures Underlying RNA Folding Process , 2016, ICTCSDM.

[27]  Hiroyuki Seki,et al.  A grammar-based approach to RNA pseudoknotted structure prediction for aligned sequences , 2011, 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS).

[28]  Shenggen Zheng,et al.  Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.

[29]  Natasa Jonoska,et al.  Biomolecular Implementation of Computing Devices with Unbounded Memory , 2004, DNA.

[30]  Jiacun Wang,et al.  Handbook of Finite State Based Models and Applications , 2012 .

[31]  Sebastian Sakowski,et al.  Autonomous Push-down Automaton Built on DNA , 2011, Informatica.

[32]  Harumichi Nishimura,et al.  Local transition functions of quantum Turing machines , 2000, RAIRO Theor. Informatics Appl..

[33]  Shenggen Zheng,et al.  A Quantum Finite Automata Approach to Modeling the Chemical Reactions , 2020, Frontiers in Physics.

[34]  O. Uhlenbeck,et al.  Characterization of RNA hairpin loop stability. , 1988, Nucleic acids research.

[35]  Ajay Kumar,et al.  On the power of two-way multihead quantum finite automata , 2019, RAIRO Theor. Informatics Appl..

[36]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[37]  Ajay Kumar,et al.  Modeling of RNA secondary structures using two-way quantum finite automata , 2018 .

[38]  D. W. Staple,et al.  Open access, freely available online Primer Pseudoknots: RNA Structures with Diverse Functions , 2022 .

[39]  D. Searls,et al.  Robots in invertebrate neuroscience , 2002, Nature.

[40]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[41]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[42]  David B. Searls,et al.  Linguistic approaches to biological sequences , 1997, Comput. Appl. Biosci..

[43]  Andris Ambainis,et al.  Automata and Quantum Computing , 2015, Handbook of Automata Theory.

[44]  Daowen Qiu Some Observations on Two-Way Finite Automata with Quantum and Classical States , 2008, ICIC.

[45]  Marta Dueñas-Díez,et al.  How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata. From Finite Automata to Turing Machines , 2019, iScience.

[46]  Keum-Young Sung,et al.  The Use of Context-Sensitive Grammar For Modeling RNA Pseudoknots , 2006, BIOCOMP.

[47]  D. Turner,et al.  Predicting optimal and suboptimal secondary structure for RNA. , 1990, Methods in enzymology.

[48]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[49]  Ajay Kumar,et al.  On the Power of Quantum Queue Automata in Real-time , 2018, ArXiv.

[50]  M. W. Shields An Introduction to Automata Theory , 1988 .

[51]  Shenggen Zheng,et al.  One-Way Finite Automata with Quantum and Classical States , 2011, Languages Alive.

[52]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .