Superparamagnetic Fe3O4–Ag hybrid nanocrystals as a potential contrast agent for CT imaging

Dispersed superparamagnetic Fe3O4–Ag hybrid nanocrystals were successfully synthesized by a seed-assisted hydrothermal strategy. The diameter of the Fe3O4–Ag nanocrystals is 10–20 nm, and the magnetization saturation is over 40 emu g−1. This facilitates their potential applications in magnetic resonance imaging for medical diagnosis.

[1]  Jeff W M Bulte,et al.  Iron oxide MR contrast agents for molecular and cellular imaging , 2004, NMR in biomedicine.

[2]  L. Meng,et al.  Superparamagnetic submicro-megranates: Fe(3)O(4) nanoparticles coated with highly cross-linked organic/inorganic hybrids. , 2009, Chemical communications.

[3]  Catherine C. Berry,et al.  Functionalisation of magnetic nanoparticles for applications in biomedicine , 2003 .

[4]  Chad A Mirkin,et al.  Three-layer composite magnetic nanoparticle probes for DNA. , 2005, Journal of the American Chemical Society.

[5]  L. Josephson Magnetic Nanoparticles for MR Imaging , 2006 .

[6]  M. Toprak,et al.  Effect of Hydrolyzing Agents on the Properties of Poly (Ethylene Glycol)-Fe3O4 Nanocomposite , 2011 .

[7]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[8]  W. Qin,et al.  Gram scale synthesis of superparamagnetic Fe3O4 nanoparticles and fluid via a facile solvothermal route , 2011 .

[9]  J. Ying,et al.  Bifunctional Fe3O4–Ag Heterodimer Nanoparticles for Two‐Photon Fluorescence Imaging and Magnetic Manipulation , 2008 .

[10]  Haixia Wu,et al.  Synthesis of ultrasmall nucleotide-functionalized superparamagnetic γ-Fe2O3 nanoparticles , 2011 .

[11]  J. Tour,et al.  Magnetite (Fe3O4) Core−Shell Nanowires: Synthesis and Magnetoresistance , 2004 .

[12]  M. Vaezi,et al.  Phase Transformation of Iron Oxide Nanoparticles by Varying the Molar Ratio of Fe2+:Fe3+ , 2008 .

[13]  H. Freund,et al.  The surface structure of Fe3O4(111) films as studied by CO adsorption , 2004 .

[14]  Pablo Ballester,et al.  Cover Picture: Inclusion of Cavitands and Calix[4]arenes into a Metallobridged para‐(1H‐Imidazo[4,5‐f][3,8]phenanthrolin‐2‐yl)‐Expanded Calix[4]arene (Angew. Chem. Int. Ed. 1‐2/2007) , 2007 .

[15]  P. Bruce,et al.  Synthesis of ordered mesoporous Fe3O4 and gamma-Fe2O3 with crystalline walls using post-template reduction/oxidation. , 2006, Journal of the American Chemical Society.

[16]  Mingyuan Gao,et al.  Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer , 2006 .

[17]  Chenjie Xu,et al.  Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta3-rich tumor cells. , 2008, Journal of the American Chemical Society.

[18]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[19]  W. Tremel,et al.  Au@MnO nanoflowers: hybrid nanocomposites for selective dual functionalization and imaging. , 2010, Angewandte Chemie.

[20]  H. Zeng,et al.  Recent Progress in Syntheses and Applications of Dumbbell‐like Nanoparticles , 2009, Advanced materials.

[21]  C. Mirkin,et al.  Superparamagnetic sub-5 nm Fe@C nanoparticles: isolation, structure, magnetic properties, and directed assembly. , 2008, Nano letters.

[22]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[23]  Qing Peng,et al.  Monodisperse magnetic single-crystal ferrite microspheres. , 2005, Angewandte Chemie.