Multidimensional Array Interpolation Applied to Direction of Arrival Estimation

In MIMO communications systems, the data has a natural multidimensional structure composed of time, frequency and space dimensions. Recently, multidimensional techniques that take into account the data multidimensional structure have been proposed for model order selection, parameter estimation and prewhitening. These multidimensional techniques require an array with a PARAFAC structure. However, in practice, building antenna arrays with precise geometries is not feasible. In this paper, we propose a multidimensional array interpolation scheme that forces a real imperfect array to become a PARAFAC array. Once the multidimensional interpolation is successfully performed, advantages such as increased identifiability, separation without imposing additional constraints and improved accuracy can be exploited. Numerical simulations show that the proposed method provides improved DOA estimation accuracy when a PARAFAC technique is applied to an originally non- PARAFAC array.

[1]  Buon Kiong Lau,et al.  Data-adaptive array interpolation for DOA estimation in correlated signal environments , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[2]  Josef A. Nossek,et al.  Reduced Rank TLS Array Interpolation for DOA Estimation , 2014, WSA.

[3]  João Paulo Carvalho Lustosa da Costa,et al.  Unscented Transformation based array interpolation , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[5]  Benjamin Friedlander,et al.  The root-MUSIC algorithm for direction finding with interpolated arrays , 1993, Signal Process..

[6]  T. P. Bronez Sector interpolation of non-uniform arrays for efficient high resolution bearing estimation , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[7]  A. Weiss,et al.  The interpolated ESPRIT algorithm for direction finding , 1991, 17th Convention of Electrical and Electronics Engineers in Israel.

[8]  Thomas Kailath,et al.  ESPIRT-estimation of signal parameters via rotational invariance techniques , 1989 .

[9]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[10]  Florian Roemer,et al.  Robust R-D parameter estimation via closed-form PARAFAC in Kronecker colored environments , 2010, 2010 7th International Symposium on Wireless Communication Systems.

[11]  Marius Pesavento,et al.  A new approach to array interpolation by generation of artificial shift invariances: interpolated ESPRIT , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[12]  Florian Roemer,et al.  Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.

[13]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[14]  Martin Haardt,et al.  Multidimensional prewhitening for enhanced signal reconstruction and parameter estimation in colored noise with Kronecker correlation structure , 2013, Signal Process..

[15]  Buon Kiong Lau,et al.  An improved array interpolation approach to DOA estimation in correlated signal environments , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[16]  F. Roemer,et al.  Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing , 2013 .

[17]  Josef A. Nossek,et al.  A signal adaptive array interpolation approach with reduced transformation bias for DOA estimation of highly correlated signals , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[19]  Florian Roemer,et al.  DETERMINISTIC PREWHITENING TO IMPROVE SUBSPACE BASED PARAMETER ESTIMATION TECHNIQUES IN SEVERELY COLORED NOISE ENVIRONMENTS , 2009 .

[20]  P. Stoica,et al.  Novel eigenanalysis method for direction estimation , 1990 .

[21]  Z. Luo,et al.  Robust array interpolation using second-order cone programming , 2002, IEEE Signal Processing Letters.

[22]  Florian Roemer,et al.  Multi-dimensional model order selection , 2011, EURASIP J. Adv. Signal Process..

[23]  B. Friedlander,et al.  Direction finding using spatial smoothing with interpolated arrays , 1992 .

[24]  Florian Roemer,et al.  Robust R-D parameter estimation via closed-form PARAFAC , 2010, 2010 International ITG Workshop on Smart Antennas (WSA).

[25]  James E. Evans,et al.  Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems , 1982 .

[26]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[27]  Marius Pesavento,et al.  Virtual array design for array interpolation using differential geometry , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.