Quadratic spline collocation method for the time fractional subdiffusion equation

In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O ( ? 3 + h 3 ) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O ( ? 4 + h 4 ) at collocation points, where ?, h are the step sizes in time and space, respectively.

[1]  Richard S. Varga,et al.  Quandratic interpolatory splines , 1974 .

[2]  H. Azizi,et al.  Solution of time fractional diffusion equations using a semi-discrete scheme and collocation method based on Chebyshev polynomials , 2013 .

[3]  Changpin Li,et al.  A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions , 2016, Int. J. Comput. Math..

[4]  Ting-Zhu Huang,et al.  Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings , 2015, Appl. Math. Lett..

[5]  C. Christara Quadratic spline collocation methods for elliptic partial differential equations , 1994 .

[6]  K. Burrage,et al.  A new fractional finite volume method for solving the fractional diffusion equation , 2014 .

[7]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[8]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[9]  Bryan M. Williams,et al.  A New Study of Blind Deconvolution with Implicit Incorporation of Nonnegativity Constraints , 2015 .

[10]  Cui-Cui Ji,et al.  A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation , 2014, Journal of Scientific Computing.

[11]  M. J. Marsden Quadratic spline interpolation , 1974 .

[12]  I. Podlubny Fractional differential equations , 1998 .

[13]  Fawang Liu,et al.  Numerical analysis of a new space-time variable fractional order advection-dispersion equation , 2014, Appl. Math. Comput..

[14]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[15]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[16]  Jan S. Hesthaven,et al.  A multi-domain spectral method for time-fractional differential equations , 2015, J. Comput. Phys..

[17]  Ting-Zhu Huang,et al.  Strang-type preconditioners for solving fractional diffusion equations by boundary value methods , 2013, J. Comput. Appl. Math..

[18]  Fawang Liu,et al.  Numerical simulation for the three-dimension fractional sub-diffusion equation☆ , 2014 .

[19]  G. J. Fleer,et al.  Stationary dynamics approach to analytical approximations for polymer coexistence curves. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Fawang Liu,et al.  A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients , 2015, Appl. Math. Comput..

[21]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[22]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[23]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[24]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[26]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[27]  Richard L. Magin,et al.  New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis , 2014, Entropy.

[28]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[29]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[30]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[31]  J. Rice,et al.  Quadratic‐spline collocation methods for two‐point boundary value problems , 1988 .

[32]  Fawang Liu,et al.  Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media , 2014, Comput. Math. Appl..

[33]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[34]  Fawang Liu,et al.  Numerical simulation of anomalous infiltration in porous media , 2014, Numerical Algorithms.