Top-down control of visual attention

[1]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[2]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[3]  L. Benevento,et al.  The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta) , 1975, The Journal of comparative neurology.

[4]  J. Trojanowski,et al.  Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey , 1976, The Journal of comparative neurology.

[5]  R. Desimone,et al.  Prestriate afferents to inferior temporal cortex: an HRP study , 1980, Brain Research.

[6]  A. Levey,et al.  Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey , 1983, The Journal of comparative neurology.

[7]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[8]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[9]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[10]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[11]  Leslie G. Ungerleider,et al.  Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido‐nigral complex in the monkey , 1990, The Journal of comparative neurology.

[12]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[13]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[14]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[15]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[16]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[17]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[18]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[19]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[20]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[21]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[22]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[23]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[24]  Edward E. Smith,et al.  Rehearsal in Spatial Working Memory: Evidence From Neuroimaging , 1999 .

[25]  S. Hillyard,et al.  The Role of Spatial Selective Attention in Working Memory for Locations: Evidence from Event-Related Potentials , 2000, Journal of Cognitive Neuroscience.

[26]  R. Wurtz,et al.  Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. , 2000, Journal of neurophysiology.

[27]  J. Kaas,et al.  Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys , 2000, Visual Neuroscience.

[28]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[29]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[31]  H. Sompolinsky,et al.  Population coding in neuronal systems with correlated noise. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[33]  C E Connor Shifting Receptive Fields , 2001, Neuron.

[34]  R. Marrocco,et al.  Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention , 2002, Experimental Brain Research.

[35]  Haim Sompolinsky,et al.  Erratum: Population coding in neuronal systems with correlated noise [Phys. Rev. E 64, 051904 (2001)] , 2002 .

[36]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[37]  A. Jha,et al.  Tracking the time-course of attentional involvement in spatial working memory: an event-related potential investigation. , 2002, Brain research. Cognitive brain research.

[38]  J. Duncan,et al.  Filtering of neural signals by focused attention in the monkey prefrontal cortex , 2002, Nature Neuroscience.

[39]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[41]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[42]  D. B. Bender,et al.  Distribution of corticotectal cells in macaque , 2003, Experimental Brain Research.

[43]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[44]  Jerald D. Kralik,et al.  Representation of Attended Versus Remembered Locations in Prefrontal Cortex , 2004, PLoS biology.

[45]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[46]  T. Robbins,et al.  Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia , 2004, Psychopharmacology.

[47]  Peter W Dicke,et al.  Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention , 2004, Nature Neuroscience.

[48]  J Jonides,et al.  The where and how of attention-based rehearsal in spatial working memory. , 2004, Brain research. Cognitive brain research.

[49]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[51]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[52]  N. Lavie Distracted and confused?: Selective attention under load , 2005, Trends in Cognitive Sciences.

[53]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[54]  S. Faraone,et al.  Attention-deficit hyperactivity disorder , 2005, The Lancet.

[55]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[56]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[57]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[58]  Robert H Wurtz,et al.  Enhanced Performance with Brain Stimulation: Attentional Shift or Visual Cue? , 2006, The Journal of Neuroscience.

[59]  B. Postle Working memory as an emergent property of the mind and brain , 2006, Neuroscience.

[60]  T. Moore,et al.  The neurobiology of visual attention: finding sources , 2006, Current Opinion in Neurobiology.

[61]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[62]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[63]  Anna C. Nobre,et al.  Spatial Attention can Bias Search in Visual Short-Term Memory , 2007, Frontiers in human neuroscience.

[64]  Graham V. Williams,et al.  Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory , 2007, Nature Neuroscience.

[65]  Tirin Moore,et al.  Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field , 2007, Proceedings of the National Academy of Sciences.

[66]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[67]  E. Knudsen Fundamental components of attention. , 2007, Annual review of neuroscience.

[68]  L. Chelazzi,et al.  Neurons in Area V4 of the Macaque Translate Attended Visual Features into Behaviorally Relevant Categories , 2007, Neuron.

[69]  Tirin Moore,et al.  Attention Governs Action in the Primate Frontal Eye Field , 2007, Neuron.

[70]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[71]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[72]  Ilya E. Monosov,et al.  Measurements of Simultaneously Recorded Spiking Activity and Local Field Potentials Suggest that Spatial Selection Emerges in the Frontal Eye Field , 2008, Neuron.

[73]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[74]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[75]  G. Humphreys,et al.  Automatic guidance of attention from working memory , 2008, Trends in Cognitive Sciences.

[76]  M. Sarter,et al.  Cholinergic Mediation of Attention , 2008, Annals of the New York Academy of Sciences.

[77]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[78]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[79]  Ernst Niebur,et al.  Effect of Stimulus Intensity on the Spike–Local Field Potential Relationship in the Secondary Somatosensory Cortex , 2008, The Journal of Neuroscience.

[80]  T. Womelsdorf,et al.  Receptive Field Shift and Shrinkage in Macaque Middle Temporal Area through Attentional Gain Modulation , 2008, The Journal of Neuroscience.

[81]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[82]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[83]  Jan Theeuwes,et al.  Inhibition of saccadic eye movements to locations in spatial working memory , 2009, Attention, perception & psychophysics.

[84]  Tirin Moore,et al.  Influence and Limitations of Popout in the Selection of Salient Visual Stimuli by Area V4 Neurons , 2009, The Journal of Neuroscience.

[85]  P. Roelfsema,et al.  Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field , 2009, The Journal of Neuroscience.

[86]  Stephen J. Gotts,et al.  High-frequency, Long-range Coupling between Prefrontal and Visual Cortex during Sustained Attention , 2022 .

[87]  T. Robbins,et al.  The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. , 2009, Annual review of neuroscience.

[88]  Jude F. Mitchell,et al.  Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4 , 2009, Neuron.

[89]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[90]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[91]  E. Miller,et al.  Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations , 2009, Neuron.

[92]  Y. Saalmann,et al.  Gain control in the visual thalamus during perception and cognition , 2009, Current Opinion in Neurobiology.

[93]  Tirin Moore,et al.  Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons , 2009, The Journal of Neuroscience.

[94]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[95]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[96]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[97]  Stefan Treue,et al.  Attention Reshapes Center-Surround Receptive Field Structure in Macaque Cortical Area MT , 2009, Cerebral cortex.

[98]  G. Salmon,et al.  Attention deficit hyperactivity disorder. , 2018, British journal of hospital medicine.