3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique

Abstract This paper presents an ultra-wideband low noise amplifier design using the dual-resonant broadband matching technique. The proposed LNA achieves a 10.2 dB gain with ±0.9 dB gain flatness over a frequency range of 3.1–10.6 GHz and a −3-dB bandwidth of 2.4–11.6 GHz. The measured noise figure ranges from 3.2 to 4.7 dB over 3.1–10.6 GHz. At 6.5 GHz, the measured IIP3 and input-referred P1dB are +6 dBm and −5 dBm, respectively. The proposed LNA occupies an active chip area of 0.56 mm 2 in a TSMC 0.18 μm RF-CMOS process and consumes 16 mW from a 1.8 V supply.

[1]  Chunhua Wang,et al.  Design of 3.1-10.6GHz ultra-wideband CMOS low noise amplifier with current reuse technique , 2011 .

[2]  Ehsan Kargaran,et al.  A novel high gain two stage ultra-wide band CMOS LNA in 0.18μm technology , 2010, Proceedings of Papers 5th European Conference on Circuits and Systems for Communications (ECCSC'10).

[3]  A.A. Abidi,et al.  A 4.5-mW 900-MHz CMOS receiver for wireless paging , 2000, IEEE Journal of Solid-State Circuits.

[4]  Chinchun Meng,et al.  Analysis and Design of the 0.13- $\mu\hbox{m}$ CMOS Shunt–Series Series–Shunt Dual-Feedback Amplifier , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Jung N. Lee,et al.  A 0.18‐μm 3.1–4.8 GHz CMOS wideband LNA for UWB system , 2008 .

[6]  S. Wong,et al.  Physical modeling of spiral inductors on silicon , 2000 .

[7]  Ulrich L. Rohde,et al.  Microwave Circuit Design Using Linear and Nonlinear Techniques: Vendelin/Microwave Circuit Design Using Linear and Nonlinear Techniques , 1990 .

[8]  Hosein Alavi-Rad,et al.  A high-gain low-power 2–14 GHz ultra-wide-band CMOS LNA for wireless receivers , 2012 .

[9]  Tae-Yeoul Yun,et al.  High-Gain Wideband CMOS Low Noise Amplifier with Two-Stage Cascode and Simplified Chebyshev Filter , 2007 .

[10]  A. Bevilacqua,et al.  An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[11]  G. Gonzalez Microwave Transistor Amplifiers: Analysis and Design , 1984 .

[12]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005 .

[13]  Pertti Vainikainen,et al.  Optimum dual-resonant impedance matching of coupling element based mobile terminal antenna structures , 2007 .

[14]  Yo-Sheng Lin,et al.  Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a $ \pi $-Match Input Network , 2010, IEEE Transactions on Microwave Theory and Techniques.