Recursive games: uniform value, Tauberian theorem and the Mertens conjecture “$$Maxmin=\lim v_n=\lim v_{\uplambda }$$Maxmin=limvn=limvλ”

We study two-player zero-sum recursive games with a countable state space and finite action spaces at each state. When the family of n-stage values $$\{v_n,n\ge 1\}$${vn,n≥1} is totally bounded for the uniform norm, we prove the existence of the uniform value. Together with a result in Rosenberg and Vieille (Math Oper Res 39:23–35, 2000), we obtain a uniform Tauberian theorem for recursive game: $$(v_n)$$(vn) converges uniformly if and only if $$(v_{\uplambda })$$(vλ) converges uniformly. We apply our main result to finite recursive games with signals (where players observe only signals on the state and on past actions). When the maximizer is more informed than the minimizer, we prove the Mertens conjecture $$Maxmin=\lim _{n\rightarrow \infty } v_n=\lim _{{\uplambda }\rightarrow 0}v_{\uplambda }$$Maxmin=limn→∞vn=limλ→0vλ. Finally, we deduce the existence of the uniform value in finite recursive game with symmetric information.

[1]  S. Sorin “Big Match” with lack of information on one side (part i) , 1984 .

[2]  Nicolas Vieille,et al.  Stochastic Games with a Single Controller and Incomplete Information , 2002, SIAM J. Control. Optim..

[3]  Nicolas Vieille,et al.  The Maxmin of Recursive Games with Incomplete Information on one Side , 2000, Math. Oper. Res..

[4]  N. Vieille,et al.  Uniform value in recursive games , 2002 .

[5]  Microeconomics-Charles W. Upton Repeated games , 2020, Game Theory.

[6]  Bruno Ziliotto Zero-sum repeated games: counterexamples to the existence of the asymptotic value and the conjecture maxmin=lim v(n) , 2013, ArXiv.

[7]  Jérôme Renault,et al.  The Value of Repeated Games with an Informed Controller , 2008, Math. Oper. Res..

[8]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[9]  Miquel Oliu-Barton,et al.  Existence of the uniform value in repeated games with a more informed controller , 2013, 1301.1935.

[10]  S. Sorin “Big match” with lack of information on one side (Part II) , 1985 .

[11]  S. Zamir,et al.  "Big match" with lack of information on one side (Part II) , 1984 .

[12]  Sylvain Sorin,et al.  Repeated Games by Jean-François Mertens , 2015 .

[13]  D. Monderer,et al.  Asymptotic properties in dynamic programming , 1993 .

[14]  D. Monderer,et al.  Discounting versus Averaging in Dynamic Programming , 1994 .

[15]  Miquel Oliu-Barton,et al.  Existence of the uniform value in zero-sum repeated games with a more informed controller , 2014 .

[16]  S. Sorin A First Course on Zero Sum Repeated Games , 2002 .

[17]  Elon Kohlberg,et al.  The Asymptotic Theory of Stochastic Games , 1976, Math. Oper. Res..

[18]  Guillaume Vigeral,et al.  Propriétés asymptotiques des jeux répétés à somme nulle , 2009 .

[19]  Ehud Lehrer,et al.  A Uniform Tauberian Theorem in Dynamic Programming , 1992, Math. Oper. Res..

[20]  Bruno Ziliotto,et al.  A Tauberian Theorem for Nonexpansive Operators and Applications to Zero-Sum Stochastic Games , 2015, Math. Oper. Res..