Conceptual study of an accelerator-driven ceramic fast reactor with long-term operation

[1]  H. Aït Abderrahim,et al.  Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production , 2010 .

[2]  Lei Yang,et al.  Concept of an Accelerator-Driven Advanced Nuclear Energy System , 2017 .

[3]  G. Bauer Overview on spallation target design concepts and related materials issues , 2010 .

[4]  Lei Yang,et al.  New concept for ADS spallation target: Gravity-driven dense granular flow target , 2015 .

[5]  Xuesong Yan,et al.  Monte Carlo Burn-Up Code System MCADS and its Application , 2014 .

[6]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[7]  Dan G. Cacuci,et al.  Handbook of Nuclear Engineering , 2010 .

[8]  Jian-yang Li,et al.  Code Development and Target Station Design for Chinese Accelerator-Driven System Project , 2016 .

[9]  A. G. Croff,et al.  User's manual for the ORIGEN2 computer code , 1980 .

[10]  F. Carré,et al.  Structural materials challenges for advanced reactor systems , 2009 .

[11]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[12]  Timothy Abram,et al.  A Technology Roadmap for Generation-IV Nuclear Energy Systems, USDOE/GIF-002-00 , 2002 .

[13]  Piyush Sabharwall,et al.  ASME Material Challenges for Advance Reactor Concepts , 2013 .

[14]  E. Schlünder,et al.  Heat transfer to packed and stirred beds from the surface of immersed bodies , 1984 .

[15]  Carlo Rubbia,et al.  Conceptual design of a fast neutron operated high power energy amplifier , 1995 .

[16]  Lei Yang,et al.  A closed nuclear energy system by accelerator-driven ceramic reactor and extend AIROX reprocessing , 2017 .

[17]  T. R. Thomas,et al.  Recycling of nuclear spent fuel with AIROX processing , 1992 .

[18]  R. W. Schleicher,et al.  The Energy Multiplier Module: Advancing the Nuclear Fuel Cycle through Technology Innovations , 2013 .