Single-variable formulations and isogeometric discretizations for shear deformable beams

Abstract We present numerical formulations of Timoshenko beams with only one unknown, the bending displacement, and it is shown that all variables of the beam problem can be expressed in terms of it and its derivatives. We develop strong and weak forms of the problem. The strong form of the problem involves the fourth derivative of the bending displacement, whereas the symmetric weak form involves, somewhat surprisingly, third and second derivatives. Based on these, we develop isogeometric collocation and Galerkin formulations, that are completely locking-free and involve only half the degrees of freedom compared to standard Timoshenko beam formulations. Several numerical tests are presented to demonstrate the performance of the proposed formulations.

[1]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[2]  Long Chen FINITE ELEMENT METHOD , 2013 .

[3]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[4]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[5]  J. Z. Zhu,et al.  The finite element method , 1977 .

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  D. L. Thomas,et al.  Timoshenko beam finite elements , 1973 .

[8]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[9]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[10]  Giovanni Falsone,et al.  An Euler–Bernoulli-like finite element method for Timoshenko beams , 2011 .

[11]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[12]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[13]  Alessandro Reali,et al.  Isogeometric collocation methods for the Reissner–Mindlin plate problem , 2015 .

[14]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[15]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[16]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[17]  K. K. Kapur Vibrations of a Timoshenko Beam, Using Finite‐Element Approach , 1966 .

[18]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[19]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[20]  Xian‐Fang Li,et al.  A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams , 2008 .

[21]  John A. Evans,et al.  Isogeometric collocation: Neumann boundary conditions and contact , 2015 .

[22]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[23]  Fehmi Cirak,et al.  Shear‐flexible subdivision shells , 2012 .

[24]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[25]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[26]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .