Single-variable formulations and isogeometric discretizations for shear deformable beams
暂无分享,去创建一个
F. Auricchio | A. Reali | J. Kiendl | T.J.R. Hughes | T. Hughes | F. Auricchio | A. Reali | J. Kiendl
[1] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[2] Long Chen. FINITE ELEMENT METHOD , 2013 .
[3] Alessandro Reali,et al. Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .
[4] Alessandro Reali,et al. An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .
[5] J. Z. Zhu,et al. The finite element method , 1977 .
[6] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[7] D. L. Thomas,et al. Timoshenko beam finite elements , 1973 .
[8] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[9] Alessandro Reali,et al. Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .
[10] Giovanni Falsone,et al. An Euler–Bernoulli-like finite element method for Timoshenko beams , 2011 .
[11] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[12] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[13] Alessandro Reali,et al. Isogeometric collocation methods for the Reissner–Mindlin plate problem , 2015 .
[14] T. Hughes,et al. Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .
[15] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[16] T. Hughes,et al. Isogeometric collocation for elastostatics and explicit dynamics , 2012 .
[17] K. K. Kapur. Vibrations of a Timoshenko Beam, Using Finite‐Element Approach , 1966 .
[18] R. Echter,et al. A hierarchic family of isogeometric shell finite elements , 2013 .
[19] Leopoldo Greco,et al. B-Spline interpolation of Kirchhoff-Love space rods , 2013 .
[20] Xian‐Fang Li,et al. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams , 2008 .
[21] John A. Evans,et al. Isogeometric collocation: Neumann boundary conditions and contact , 2015 .
[22] Hector Gomez,et al. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..
[23] Fehmi Cirak,et al. Shear‐flexible subdivision shells , 2012 .
[24] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[25] Alessandro Reali,et al. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .
[26] S. Timoshenko,et al. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .