On the Lower Order and Type of Entire Axially Monogenic Functions
暂无分享,去创建一个
[1] K. Gürlebeck,et al. Holomorphic Functions in the Plane and n-dimensional Space , 2007 .
[2] D. Constales,et al. On the relation between the growth and the Taylor coefficients of entire solutions to the higher-dimensional Cauchy–Riemann system in R n + 1 , 2007 .
[3] D. Constales,et al. On the growth type of entire monogenic functions , 2007 .
[4] R. Almeida,et al. On the Asymptotic Growth of Entire Monogenic Functions , 2005 .
[5] Klaus Gürlebeck,et al. Quaternionic and Clifford Calculus for Physicists and Engineers , 1998 .
[6] F. Sommen,et al. Clifford Algebra and Spinor-Valued Functions , 1992 .
[7] D. Constales,et al. Basic sets of pofynomials in clifford analysis , 1990 .
[8] W. Hayman. The Local Growth of Power Series: A Survey of the Wiman-Valiron Method , 1974, Canadian Mathematical Bulletin.
[9] S. Shah. On the Coefficients of An Entire Series of Finite Order , 1951 .
[10] S. Shah. On the lower order of integral functions , 1946 .
[11] R. Nevanlinna. Zur Theorie der Meromorphen Funktionen , 1925 .
[12] W. H. Young,et al. Lectures On The General Theory Of Integral Functions , 1923 .
[13] G. Pólya. Über den Zusammenhang Zwischen dem Maximalbetrage Einer Analytischen Funktion und Dem Grössten Gliede der Zugehörigen Taylorschen Reihe , 1916 .
[14] A. Wiman. Über den Zusammenhang Zwischen dem Maximalbetrage Einer Analytischen Funktion und dem Grössten Gliede der Zugehörigen Taylor'schen Reihe , 1914 .
[15] Alfred Pringsheim. Elementare Theorie der ganzen transcendenten Funktionen von endlicher Ordnung , 1904 .