Fixed-point iterative sweeping methods for static hamilton-Jacobi Equations

Fast sweeping methods utilize the Gauss-Seidel iterations and alternating sweeping strategy to achieve the fast convergence for computations of static Hamilton-Jacobi equations. They take advantage of the properties of hyperbolic PDEs and try to cover a family of characteristics of the corresponding Hamilton-Jacobi equation in a certain direction simultaneously in each sweeping order. The time-marching approach to steady state calculation is much slower than the fast sweeping methods due to the CFL condition constraint. But this kind of fixed-point iterations as time-marching methods have explicit form and do not involve inverse operation of nonlinear Hamiltonian. So it can solve general Hamilton-Jacobi equations using any monotone numerical Hamiltonian and high order approximations easily. In this paper, we adopt the Gauss-Seidel idea and alternating sweeping strategy to the time-marching type fixed-point iterations to solve the static Hamilton-Jacobi equations. Extensive numerical examples verify at least a 2 ∼ 5 times acceleration of convergence even on relatively coarse grids. The acceleration is even more when the grid is further refined. Moreover the Gauss-Seidel philosophy and alternating sweeping strategy improves the stability, i.e., a larger CFL number can be used. Also the computational cost is exactly the same as the time-marching scheme at each time step.

[1]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[2]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[3]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[4]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[5]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[6]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[7]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[8]  P. Lions,et al.  Shape-from-shading, viscosity solutions and edges , 1993 .

[9]  S. Osher A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations , 1993 .

[10]  Marizio Falcone,et al.  Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .

[11]  S. Gray,et al.  Kirchhoff migration using eikonal equation traveltimes , 1994 .

[12]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[13]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[14]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Elbridge Gerry Puckett,et al.  Two new methods for simulating photolithography development in 3D , 1997 .

[16]  W. Symes,et al.  Anisotropic finite‐difference traveltimes using a Hamilton‐Jacobi solver , 1997 .

[17]  P. Dupuis,et al.  Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[18]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[19]  Z. Xin,et al.  Numerical Passage from Systems of Conservation Laws to Hamilton--Jacobi Equations, and Relaxation Schemes , 1998 .

[20]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[21]  Richard I. Cook,et al.  3-D traveltime computation using second‐order ENO scheme , 1999 .

[22]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[23]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[24]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[25]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[26]  Rémi Abgrall,et al.  High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..

[27]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[28]  W. Symes,et al.  Finite‐difference quasi‐P traveltimes for anisotropic media , 2001 .

[29]  W. Symes,et al.  Paraxial eikonal solvers for anisotropic quasi-P travel times , 2001 .

[30]  J. Sethian,et al.  Ordered upwind methods for static Hamilton–Jacobi equations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Falcone,et al.  Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods , 2002 .

[32]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[33]  Steve Bryson,et al.  High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations , 2013, SIAM J. Numer. Anal..

[34]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[35]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[36]  S. Osher,et al.  A level set-based Eulerian approach for anisotropic wave propagation , 2003 .

[37]  Thomas C. Cecil,et al.  Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .

[38]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[39]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[40]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[41]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[42]  Hongkai Zhao,et al.  High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations , 2006, J. Sci. Comput..

[43]  Hongkai Zhao,et al.  Fast Sweeping Methods for Eikonal Equations on Triangular Meshes , 2007, SIAM J. Numer. Anal..

[44]  Chi-Wang Shu HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS , 2007 .

[45]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .